College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The ground temperature a few meters below the surface is fairly constant throughout the year and is near the average value of the air temperature. In areas in which the air temperature drops very low in the winter, the exterior unit of a heat pump designed for heating is sometimes buried underground in order to use the earth as a thermal reservoir. Why is it worthwhile to bury the heat exchanger, even if the underground unit costs more to purchase
and install than one above ground?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 46-kg woman cheats on her diet and eats a 555-Calorie (555 kcal) jelly doughnut for breakfast. (a) How many joules of energy are the equivalent of one jelly doughnut? (b) How many stairs must the woman climb to perform an amount of mechanical work equivalent to the food energy in one jelly doughnut? Assume the height of a single stair is 15 cm. stairs (c) If the human body is only 20% efficient in converting chemical energy to mechanical energy, how many stairs must the woman climb to work off her breakfast? stairs Need Help? Read Itarrow_forwardMc8arrow_forward1. Suppose a woman does 500 J of work and -9400 J of heat transfer occurs into the environment in the process. (a) What is the decrease in her internal energy, assuming no change in temperature or consumption of food? (That is, there is no other energy transfer.) ΔΕint ✓ J (b) The internal energy is stored energy due to food intake. Treating the change in internal energy as the input energy and work done as output, what is her efficiency? Efficiency, Eff: % (c) What physics law did you use in this problem? Zeroth Law of Thermodynamics First Law of Thermodynamics Second Law of Thermodynamicsarrow_forward
- In a game of football outdoors on a cold day, a player will begin to feel exhausted after using approximately 8.0 x 10 J of internal energy. (a) One player, dressed too lightly for the weather, has to leave the game after losing 7.0 x 10° Jof heat. How much work has he done? (b) Another player, wearing clothes that offer better protection against heat loss, is able to remain in the game long enough to do 2.3x 105 J of work. What is the magnitude of the heat that he has lost? (a) Number Units (b) Number Units <.arrow_forwardIdentify the different types of heat transfer occurring in the following scenario. There are 4 in total. Sharkeisha went on a camping trip. During the day it was so hot that she got sunburned (1). When it was time to go to her campsite, she noticed smoke in the air (2). Her father had started a fire and she felt (3) the heat as she walked by the fire. In the morning while her mother was cooking breakfast she accidentally touched (4) a hot pan and got burned. Although this was the case she still had a lot of fun on the trip. 1. 2. 3. 4.arrow_forwardBook: Sustainable Energy, Si Edition, 2nd Edition by Richard A. Dunlop Chapter 15 - Problem 6. Assume that geothermal heat transfer (at least near the surface of the earth) is by conduction through the crust rocks. For an average geothermal heat flow of 0.087 W/m2 and typical thermal gradient of 1008C/km, calculate the thermal conductivity of the rock. Compare with the known thermal conductivities of similar materials given in Chapter 8.arrow_forward
- 5. A simple pendulum is suspended from the ceiling by means of a string of length 2.15 m long and has a mass of 4.08 kg. You give it a push away from vertical so that it starts swinging with a speed of 2.83 m/s. Due to friction at the pivot point, 1.00 Joule of the pendulums initial kinetic energy is lost as heat during the upward swing. What maximum angle will it reach, with respect to the vertical, before falling back down? 48.6 degrees 42.3 degrees 34.7 degrees 35.9 degreesarrow_forwardA 100-gram apple is dropped off a 200 m high cliff. As it falls its temperature drops by 2.5 °C due to the cool surrounding air. If its heat capacity is 4100 J/(kg.K), determine which is greater, the decrease in potential energy as it moves from the top to bottom of the cliff or the decrease in internal energy.arrow_forwardA wood stove is used to heat a single room. The stove is cylindrical in shape, with a diameter of 40.0 cm and a length of 49.0 cm, and operates at a temperature of 410°F. (σ = 5.6696 10-8 W/m2 · K4, 1 Btu = 1054 J.) (a) If the temperature of the room is 70.0°F, determine the amount of radiant energy delivered to the room by the stove each second if the emissivity is 0.950. W (b) If the room is a square with walls that are 8.00 ft high and 30.0 ft wide, determine the R-value needed in the walls and ceiling to maintain the inside temperature at 70.0°F if the outside temperature is 32.0°F. Note that we are ignoring any heat conveyed by the stove via convection and any energy lost through the walls (and windows!) via convection or radiation. ft2 · °F · h/Btuarrow_forward
- You wish to chill 12 cans of soda at 25.0 °C down to 5.0 °C beforeserving them to guests. Each can has a mass of 0.354 kg, and thespecific heat of soda is the same as that of water. (a) How muchthermal energy must be removed in order to chill all 12 cans?(b) If the chilling process requires 4.0 h, what is the average rate(in W) at which thermal energy is removed from the soda?arrow_forwardAsap plzzzzzzzzzarrow_forwardThe urban heat island effect is often strongest at night when temperatures would typically drop. What does this indicate about energy transfer and the material used in the building? (a) The material in buildings releases more energy at night than it absorbs during the day (b) The material in buildings absorbs a lot of energy during the day and when it gets colder at night the energy is released back into the cooler air. (c) The material in buildings absorbs energy during the day and releases it because the temperature of the buildings is lower than the cooler air (d) The material in buildings releases a lot of energy into the hot air during the day so at night all of the energy is still therearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON