The fourier integral of the following function Correspond to f(t) (t+1 = = \-t-1 0≤t≤π 00 Π + Σ ((-1)+1 πk² -2+(-1)* -sen(kt) + cos (kt) k A- B- Π 00 -(-1)kv −1)k 1, − ++ ½ Σ ( (= (³) sen(kt) + (-1) — cos (ke) 8 k=1 πλ s (kt)) (-1)*+1 πk² -1+(-1)* sen(kt) + cos (kt) k k=1 C- *+Σ(- (-1)*-1 -1-(-1)* sen(kt) πk³ cos (kt) k² (kt)) k=1 D-

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The
fourier
integral of the following function
Correspond
to
f(t)
(t+1
=
=
\-t-1
0≤t≤π
00
Π
+ Σ
((-1)+1
πk²
-2+(-1)*
-sen(kt) +
cos (kt)
k
A-
B-
Π
00
-(-1)kv
−1)k 1,
− ++ ½ Σ ( (= (³) sen(kt) + (-1) — cos (ke)
8
k=1
πλ
s (kt))
(-1)*+1
πk²
-1+(-1)*
sen(kt) +
cos (kt)
k
k=1
C-
*+Σ(-
(-1)*-1
-1-(-1)*
sen(kt)
πk³
cos (kt)
k²
(kt))
k=1
D-
Transcribed Image Text:The fourier integral of the following function Correspond to f(t) (t+1 = = \-t-1 0≤t≤π 00 Π + Σ ((-1)+1 πk² -2+(-1)* -sen(kt) + cos (kt) k A- B- Π 00 -(-1)kv −1)k 1, − ++ ½ Σ ( (= (³) sen(kt) + (-1) — cos (ke) 8 k=1 πλ s (kt)) (-1)*+1 πk² -1+(-1)* sen(kt) + cos (kt) k k=1 C- *+Σ(- (-1)*-1 -1-(-1)* sen(kt) πk³ cos (kt) k² (kt)) k=1 D-
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,