MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps
Knowledge Booster
Similar questions
- The data show the chest size and weight of several bears. Find the regression equation, letting chest size be the independent (x) variable. Then find the best predicted weight of a bear with a chest size of 58 inches. Is the result close to the actual weight of 672 pounds? Use a significance level of 0.05. Chest size (inches) Weight (pounds) 46 57 53 41 40 40 384 580 542 358 306 320arrow_forwardA real estate company wants to study the relationship between house sales prices and some important predictors of sales prices. Based on data from recently sold homes in the space, the following variables are used in a multiple regression model. y = sales price (in thousands of dollars) x₁ = total floor area (in square feet) x₂ = number of bedrooms x3 distance to nearest high school (in miles) = The estimated model is as follows. =76+0.098x₁ +16x₂ - 8x3 Answer the questions below for the interpretation of the coefficient of X₂ in this model. (a) Holding the other variables fixed, what is the average change in sales price for each additional bedroom in a house? dollars (b) Is this change an increase or a decrease? O increase O decrease Xarrow_forwardMark Price, the new productions manager for Speakers and Company, needs to find out which variable most affects the demand for their line of company speakers. He is uncertain whether the unit price of the product or the effects of increased marketing are the main drivers in sales and wants to use regression analysis to figure out which factor drives more demand for its particular market. Pertinent information was collected by an extensive marketing project that lasted over the past 12 years and was reduced to the data that follow: YEAR 1 2 3 4 5 6 7 B 9 10 11 12 UNIT SALES (THOUSANDS) 398 698 898 y bar 1,304 1,163 1,195 898 1,200 982 1,235 875 811 PRICE $ PER UNIT 283 209 213 220 209 200 220 209 230 213 216 243 ADVERTISING ($000) 621 821 1,200 1,405 1,210 1,304 875 1,200 691 875 691 691 a. Perform a regression analysis based on these data using Excel. Note: Negative values should be indicated by a minus sign. Round your answers to 4 decimal places. Price advertisingarrow_forward
- Find the equation of the regression line for the given data. Then construct a scatter plot of the data and draw the regression line. (The pair of variables have a significant correlation.) Then use the regression equation to predict the value of y for each of the given x-values, if meaningful. The table below shows the heights (in feet) and the number of stories of six notable buildings in a city. Height, x Stories, y 519 (a) x = 500 feet (c) x = 810 feet (b) x = 649 feet (d) x = 732 feet 775 619 508 491 474 36 53 47 44 43 37 Find the regression equation. y=x+ O (Round the slope to three decimal places as needed. Round the y-intercept to two decimal places as needed.) Choose the correct graph below. OA. 60- 60- 60- 60- 800 Height (feet) 800 Height (feet) 800 Height (feet) Height (feet) (a) Predict the value of y for x = 500. Choose the correct answer below. A. 52 В. 40 C. 48 D. not meaningful (b) Predict the value of y for x = 649. Choose the correct answer below. A. 56 В. 48 O C. 40…arrow_forwardThe number of megapixels in a digital camera is one of the most important factors in determining picture quality. But, do digital cameras with more megapixels cost more? The following data show the number of megapixels and the price ($) for 10 digital cameras(Consumer Reports, March 2009). Use these data to develop an estimated regression equation that can be used to predict the price of a digital camera given the number of megapixels. Brand and Model Megapixels Price (S) Canon PowerShot SD1100 IS Casio Exilim Card EX-510 8 180 200 230 10 Sony Cyber-shot DSC-T70 Pentax Optio M50 Canon PowerShot G10 120 470 15 8 Canon PowerShot A590 IS Canon PowerShot El 140 180 10 12 Fujifilm FinePix FOOFD Sony Cyber-shot DSC-W170 Canon PowerShot A470 310 10 250 110arrow_forwardThe following data show the brand, price ($), and the overall score for six stereo headphones that were tested by a certain magazine. The overall score is based on sound quality and effectiveness of ambient noise reduction. Scores range from 0 (lowest) to 100 (highest). The estimated regression equation for these data is ŷ = 23.462 + 0.315x, where x = price ($) and y = overall score. Brand Price ($) Score A 180 74 B 150 73 C 95 59 D 70 58 E 70 42 F 35 24 (a) Compute SST, SSR, and SSE. (Round your answers to three decimal places.) SST=SSR=SSE= (b) Compute the coefficient of determination r2. (Round your answer to three decimal places.) r2 = Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it is at least 0.55.) The least squares line provided a good fit as a small proportion of the variability in y has been explained by the least squares line.The least squares line provided a good fit as a large proportion of…arrow_forward
- onsider the following sample of production volumes and total cost data for a manufacturing operation. Production Volume(units) Total Cost($) 400 3,900 450 4,900 550 5,500 600 5,900 700 6,400 750 7,100 This data was used to develop an estimated regression equation, ŷ = 970.67 + 8.08x, relating production volume and cost for a particular manufacturing operation. Use ? = 0.05 to test whether the production volume is significantly related to the total cost. (Use the F test.) Set up the ANOVA table. (Round your p-value to three decimal places and all other values to two decimal places.) Sourceof Variation Sumof Squares Degreesof Freedom MeanSquare F p-value Regression Error Total Find the value of the test statistic. (Round your answer to two decimal places.) Find the p-value. (Round your answer to three decimal places.) p-value = What is your conclusion? Reject H0. We conclude that the relationship between production…arrow_forwardFor the provided data, develop a regression model for overall satisfaction as a function of years of service and department that has the largest R. Note that the categorical variable department has multiple levels and will require the use of multiple dummy variables. Which department, if any, has the highest impact on roduction satisfaction? Production Production E Click the icon to view the job satisfaction data. Determine the regression model for overall satisfaction as a function of years of service and department that has the largest R. Let "Administrative" be the baseline department, let X, represent Maintenance, let X, represent Management, let X, represent Production, let X, represent Quality Control, and let Xg represent Shipping / Receiving, coding each department variable with a 1 if the person is in that department and 0 otherwise. In addition, let Xe represent Years. Enter the terms of the equation so that the X-values are in ascending numerical order by base. Select the…arrow_forwardThe following data show the brand, price (S), and the overall score for six stereo headphones that were tested by a certain magazine. The overall score is based on sound quality and effectiveness of ambient noise reduction. Scores range from 0 (lowest) to 100 (highest). The estimated regression equation for these data is ý = 22.522 + 0.335x, where x = price ($) and y = overall score. Brand Price ($) Score A 180 78 B 150 73 95 63 70 58 E 70 38 35 26 (a) Compute SST, SSR, and SSE. (Round your answers to three decimal places.) SST = SSR = SSE = (b) Compute the coefficient of determination rt. (Round your answer to three decimal places.) 12 = Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it is at least 0.55.) O The least squares line provided a good fit as a small proportion of the variability in y has been explained by the least squares line. O The least squares line did not provide a good fit as a small proportion of the variability in y…arrow_forward
- The data show the chest size and weight of several bears. Find the regression equation, letting chest size be the independent (x) variable. Then find the best predicted weight of a bear with a chest size of 58 inches. Is the result close to the actual weight of 572 pounds? Use a significance level of 0.05. Chest size (inches) 46 57 53 41 40 40 Weight (pounds) 384 580 542 358 306 320 LOADING... Click the icon to view the critical values of the Pearson correlation coefficient r. What is the regression equation? y=nothing+nothingx (Round to one decimal place as needed.)arrow_forwardListed below are paired data consisting of movie budget amounts and the amounts that the movies grossed. Find the regression equation, letting the budget be the predictor (x) variable. Find the best predicted amount that a movie will gross if its budget is $130 million. Use a significance level of α=0.05. A. The regression equation is Y= (Round to one decimal place as needed.) B. The best predicted gross for a movie with a $130 million budget is $ million. (Round to one decimal place as needed.)arrow_forwardThe datasetBody.xlsgives the percent of weight made up of body fat for 100 men as well as other variables such as Age, Weight (lb), Height (in), and circumference (cm) measurements for the Neck, Chest, Abdomen, Ankle, Biceps, and Wrist. We are interested in predicting body fat based on abdomen circumference. Find the equation of the regression line relating to body fat and abdomen circumference. Make a scatter-plot with a regression line. What body fat percent does the line predict for a person with an abdomen circumference of 110 cm? One of the men in the study had an abdomen circumference of 92.4 cm and a body fat of 22.5 percent. Find the residual that corresponds to this observation. Bodyfat Abdomen 32.3 115.6 22.5 92.4 22 86 12.3 85.2 20.5 95.6 22.6 100 28.7 103.1 21.3 89.6 29.9 110.3 21.3 100.5 29.9 100.5 20.4 98.9 16.9 90.3 14.7 83.3 10.8 73.7 26.7 94.9 11.3 86.7 18.1 87.5 8.8 82.8 11.8 83.3 11 83.6 14.9 87 31.9 108.5 17.3…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman