The following data are obtained from a tensile test of a copper specimen. - The load at the yield point is 143 kN. - Length of the specimen is 29 mm. - The yield strength is 71 kN/mm2. - The percentage of elongation is 48 %. Determine the following Diameter of the specimen, Final length of the specimen, Stress under an elastic load of 18 kN, Young's Modulus if the elongation is 1 mm at 18 kN and Final diameter if the percentage of reduction in area is 29 %. FIND: Young's Modulus of the Specimen (in N/mm2) Final Area of the Specimen at Fracture (in mm) Final Diameter of the Specimen after Fracture (in mm)
The following data are obtained from a tensile test of a copper specimen. - The load at the yield point is 143 kN. - Length of the specimen is 29 mm. - The yield strength is 71 kN/mm2. - The percentage of elongation is 48 %. Determine the following Diameter of the specimen, Final length of the specimen, Stress under an elastic load of 18 kN, Young's Modulus if the elongation is 1 mm at 18 kN and Final diameter if the percentage of reduction in area is 29 %. FIND: Young's Modulus of the Specimen (in N/mm2) Final Area of the Specimen at Fracture (in mm) Final Diameter of the Specimen after Fracture (in mm)
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
The following data are obtained from a tensile test of a copper specimen.
- The load at the yield point is 143 kN.
- Length of the specimen is 29 mm.
- The yield strength is 71 kN/mm2.
- The percentage of elongation is 48 %.
Determine the following
Diameter of the specimen,
Final length of the specimen,
Stress under an elastic load of 18 kN,
Young's Modulus if the elongation is 1 mm at 18 kN and
Final diameter if the percentage of reduction in area is 29 %.
FIND:
Young's Modulus of the Specimen (in N/mm2)
Final Area of the Specimen at Fracture (in mm)
Final Diameter of the Specimen after Fracture (in mm)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY