Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
The following data are obtained at 0°C in a constant-volume batch reactor using
pure gaseous A:
Time, min 0 2 4 6 8 10 12 14
Pressure, mmHg 760 600 475 390 320 275 240 215
The stoichiometry of the decomposition is A -> 2.5R.
What size plug flow reactor (in liters) operating at 0°C and 760 mmHg can treat
60 mol A/hr feed to obtain 50% conversion of A?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 2 images
Knowledge Booster
Similar questions
- Distillation is used to separate pentane from hexane. The feed amounts 700 mol/s and has amole ratio pentane/hexane = 0.5. The bottom and top products have the compositions xB=0.05 andxD= 0.98. The reflux ratio is 2.25. The column pressure is 1 bar. The feed, at the bubbling point, enters the column exactly on the feed tray. The tray temperature is equal to the feed temperature. The pentane vapor pressure is given by: lnP=11T-3410/T The vapor pressure of hexane is 1/3 of the pentane vapor pressure over the whole temperature range. The heat of vaporization amounts to 30 kJ/mol. The distance between the trays amounts to 0.50 m. A.The vapor stream from the reboiler=693.100 mole/s B.The required energy in the reboiler=20793.01887 kJ/s c. number of equilibrium stages d.height of columnarrow_forwardA rotameter records 100 L/h of liquid mixture being pumped into a distillation column operating at steady-state. This feed mixture contains 30 wt% acetone (A) and 70 wt% H2O. During the processing, it is able to achieve a top product stream with 90 wt% A while the bottom product stream contained 5% of the A fed to the column and the rest H2O. 1. What is the ratio of top product to feed? The specific gravity of the feed is 0.75. a. insufficient information to make a conclusion b. lesser than 1 c. greater than 1 d. 1 2. How many of DoF?arrow_forwardShow all steps please, thanks.arrow_forward
- Q.1) In the experiment, you wrap a piece of copper wire around your magnesium strip to suspend the magnesium inside the eudiometer. Why is copper wire a good choice for this task? Group of answer choices It conducts electricity very well It reacts strongly with the acid It does not react with the acid It is much heavier than Mg Part B) A 45 mL sample of a dry gas is collected at 380 torr and 25 °C. Calculate the volume of the gas sample (in mL) at STP. Part C)Using the data provided in Table 3 in the handout (also provided below), calculate the vapor pressure of water at 21.0 °C. Table 3: Vapor pressure of water at various temperatures T (˚C) P (mmHg) T (˚C) P (mmHg) T (˚C) P (mmHg) 0 4.58 16 13.63 26 25.21 5 6.54 18 15.48 28 28.35 10 9.21 20 17.54 30 31.82 12 10.52 22 19.83 40 55.3 14 11.99 24 22.38 50 92.5arrow_forwardThe formation of NO from Na and O is to be carried out in a small batch reactor. As a first approximation, we shall consider that the reaction time is more rapid than the time of cylinder compression, consequently, the reaction takes place isothermally in car eylinder at 2700 K, in a constant volume reactor (cylinder) and under a pressure of 20 atm, the initial concentration of N2 is 0.0696 mol/liter. By a specifying constant volume, we are assuming that reaction take place rapidly with respect to the movement of the piston in the cylinder. Consider that the feed consists of 77% N2, 15% Oz and 8% other gases, which may be considered inert. At this temperature the equilibrium constant (Ke-0.01). The reaction is reversible: Na + 0z + 2NO With a rate equation: Cho -TN, = k ( CN, Co, Ke Calculate: a) The equilibrium conversion of N2. b) The time required to achieve 80% of the equilibrium conversion. The formation reaction rate- constant k at this temperature is 1.11 liter mol.h' Hint: dx…arrow_forward6arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The