College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
The following circuit has an ideal battery of potential difference 15.16V and R1 has a resistance of 3.15Ω and R2 has a resistance of 9.17Ω. The capacitor has a capacitance of 6.06pF. What is the current through R2 after this circuit has been hooked up for a long time?
Expert Solution
arrow_forward
Step 1
When circuit is hooked up for a long time then capacitor get fully charged and steady state will be reached.i.e., no current will flow through the arm containing capacitor therefore only consider the resistors.
Resistors are connected in series hence current through both resistor will be same.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the circuit below the value of the resistance 14 Ω and the value of the capacitance is 2.0 µF. The voltage of the battery is 50 V. The capacitor is initially uncharged. Sometime after the switch is closed, the current in the circuit is measured to be 1.1 A. At this time, what is the charge on the capacitor, in µC? Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.arrow_forwardThis problem involves analyzing an RC circuit. See the circuit diagram below. Switch closes at t = 0 s. А. When the switch closes at t = 0, the capacitor will begin to charge. What is AVc a very long time after the switch has closed? After a very long time, what is the maximum charge on the capacitor, Qmax in terms of a combination of problem variables Ɛ, C or R? %3D Apply Kirchhoff's loop law starting clockwise from the lower left corner. Write down the loop equation for this circuit. How is the current through the resistor related to the instantaneous capacitor charge? Is I = + dQ/dt or I = – dQ/dt? Explain. | В. The Kirchhoff loop equation from part (A) should be a differential equation in terms of dQ/dt. Using the differential equation technique “separation of variables" show that charge as a function of time is given by Q(t) = Qmax(1 – e-t/t). С. Using the result of part (B) determine and expression for the current as a function of time 1(t). Sketch Q (t) and I(t) from t = 0 to t…arrow_forwardThe question is . A) What is the time constant for the circuit shown in the figure below if the value of of e=12.0 V, R=22.8ohm, and C= 88.1mF. B Suppose the switch is closed and the capacitor starts to charge. How much of the charge will be accumulated on each plate of the capacitor after 3 s of charging.. Submit answer the value of the charge (in mC, with two decimal places).arrow_forward
- The circuit in the figure below has been connected for a long time. Let R1 = 8.60 Ω and R2 = 4.20 Ω. (a) What is the potential difference across the capacitor?(b) If the battery is disconnected from the circuit, over what time interval does the capacitor discharge to one-tenth its initial voltage?arrow_forwardYou charge an initially uncharged 72.9 mF capacitor through a 27.9 2 resistor by means of a 9.00 V battery having negligible internal resistance. Find the time constant t of the circuit. T = S What is the charge Q on the capacitor 1.71 time constants after the circuit is closed? Q = C What is the charge Qo after a long amount of time has passed? Carrow_forwardA capacitor with a capacitance of 3.5 μF is initially uncharged. It is connected in series with a switch of negligible resistance, a resistor with a resistance of 19 kΩ, and a battery that has a potential difference of 170 V. What is the charge Q, in microcoulombs, on the capacitor when the current in the resistor equals one half its maximum value.arrow_forward
- In a heart pacemaker, a pulse is delivered to the heart 84 times per minute. The capacitor that controls this pulsing rate discharges through a resistance of 3.9 ✕ 106 Ω. One pulse is delivered every time the fully charged capacitor loses 63.2% of its original charge. What is the capacitance of the capacitor? Farrow_forwardTwo resistors, R1 = 50 Ω and R2 = 17 Ω are connected in series to a battery providing voltage ΔVbat = 3.1 V. What is the potential difference measured across the resistor R2?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON