Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Similar questions
- . The following picture shows a LONG conductor carrying current 1. Nearby there is a conducting rectangular loop with sides a = 8 cm and b = 4 cm. The loop also carries a resistance R = 10 ohms. The curent is constant and has a value of I = 6.0 Amperes. The loop is moving away to the right with a constant velocity, V = 2 m/s. Answer the following questions at the instant of time t" when the left edge of the loop is at position "x" as shown below Use the coordinate system , x to the right, y into the board, z upward a) Write an expression for the magnetic field as a function of the distance "x" (from the LONG conductor to the loop. ) USE “+" for CCW circulation and “.“ for CW circulation. b) Write the magnetic field in "i-j-k" format at point "x" to the right of the current carrying wire in the "i-zZ" plane R a c) Write the infinitesimal area vector for the loop in "i-j-k" format d) Write the explicit integral for the magnetic flux through the area of the loop using the answer for B and…arrow_forwardd,e,f,g,h kısımlarını çözmeniz yeterliarrow_forwardFor the circuit shown below, Ɛ = 24 V, L = 3.6 mH, and R = 3.0 N. After steady state is reached with S, closed and S, open, S, is closed and immediately thereafter (at t = 0) S, is opened. R S2 R (a) Determine the current through L (in A) at t = 0. A (b) Determine the current through L (in A) at t = 4.0 x 10-4 s. A (c) Determine the voltages across L and R (in V) at t = 4.0 x 10-4 s. V, = V VR = V 0000,arrow_forward
- The above picture depicts a moveable vertical conducting bar sliding on fixed conducting rails. v → = 2.3 m/s and B → is 0.65 T and out of the page. What is the current in the system? Group of answer choices 0.30 A 1.5 A 0.012 A 0 A 7.5 Aarrow_forwardIt is desired to construct a solenoid that will have a resistance of 5.30 Ω (at 20°C) and produce a magnetic field of 4.00 ✕ 10−2 T at its center when it carries a current of 3.40 A. The solenoid is to be constructed from copper wire having a diameter of 0.500 mm. If the radius of the solenoid is to be 1.00 cm, determine the following. (The resistivity of copper at 20°C is 1.7 ✕ 10−8 Ω · m.) (a) the number of turns of wire needed to build the solenoid (b) the length the solenoid should have, in cm.arrow_forwardQuestion 13arrow_forward
arrow_back_ios
arrow_forward_ios