College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 6 steps with 6 images
Knowledge Booster
Similar questions
- When a gymnast weighing 740 N executes the iron cross as in figure (a), the primary muscles involved in supporting this position are the latissimus dorsi ("lats") and the pectoralis major ("pecs"). The rings exert an upward force on the arms and support the weight of the gymnast. The force exerted by the shoulder joint on the arm is labeled F while the two muscles exert a total force F on the arm. Determine the magnitude of the force F Note that one ring supports half the weight of the gymnast, which is w 370 N as indicated in figure (b). Assume that the force F acts at an angle of 45° below the horizontal at a distance of 4.0 cm from the shoulder joint. In your estimate, take the distance from the shoulder joint to the hand to be L = 75 cm and ignore the weight of the arm. m kN Shoulder joint 4.0 cm- 45.00 Ed Bock/CORBISarrow_forwardA man holds a 186-N ball in his hand, with the forearm horizontal (see the figure). He can support the ball in this position because of the flexor muscle force M, which is applied perpendicular to the forearm. The forearm weighs 21.6 N and has a center of gravity as indicated. Find (a) the magnitude of M and the (b) magnitude and (c) direction (as a positive angle counterclockwise from horizontal) of the force applied by the upper arm bone to the forearm at the elbow joint. (a) Number (b) Number i (c) Number i Upper arm bone- Elbow joint 0.0510 m+ Units Units Units Flexor muscle M -0.0890 m -0.330 m-arrow_forwardPlease Asaparrow_forward
- A beam resting on two pivots has a length of L = 6.00 m and mass M = 79.0 kg. The pivot under the left end exerts a normal force n, on the beam, and the second pivot placed a distance l = 4.00 m from the left end exerts a normal force n,. A woman of mass m = 59.5 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. M (a) Sketch a free-body diagram, labeling the gravitational and normal forces acting on the beam and placing the woman x meters to the right of the first pivot, which is the origin. (Submit a file with a maximum size of 1 MB.) Choose File No file chosen This answer has not been graded yet. (b) Where is the woman when the normal force n, is the greatest? X = (c) What is n, when the beam is about to tip? N (d) Use the force equation of equilibrium to find the value of n, when the beam is about to tip. N (e) Using the result of part (c) and the torque equilibrium…arrow_forwardA beam resting on two pivots has a length of L = 6.00 m and mass M = 89.0 kg.The pivot under the left end exerts a normal force n1 on the beam, and the second pivot placed a distance ℓ = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 52.5 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. A woman of mass m walking across a beam which is resting on two pivots. The beam is of length L and mass M and the woman is a distance x from the left end of the beam. The first pivot is directly under the left end of the beam and the second pivot is a distance ℓ from the first pivot at a shorter distance than the length of the beam. (a) Sketch a free-body diagram, labeling the gravitational and normal forces acting on the beam and placing the woman x meters to the right of the first pivot, which is the origin. (b) Where is the woman when the normal…arrow_forwardThe forces exerted by the bicep muscle and acting on the elbow when a 12 kg barbell is being curled can be modeled based on the diagram above. The bicep muscle can be treated as a vertical cable. The mass and length of the forearm are 2 kg and 32 cm, respectively. The center of mass of the forearm is a distance of 14 cm from the point P, while the bicep connects to the forearm at a point 4.5 cm from P. a) Determine the tension in bicep muscle and the force of the humerus acting downward on the elbow at point P. b) Assuming the tension in the bicep muscle continues to be oriented vertically, determine the tension in the bicep muscle and the force acting at P after the barbell has been raised by an angle of 30 degrees relative to the horizontal.arrow_forward
- A hungry bear weighing 85.0 kg walks out on a beam in an attempt to retrieve a basket of food hanging at the end of the beam. The beam is uniform, has a mass of 20.0 kg, is 8.00 m long, and pivoted at the wall; the basket weighs 10.0 kg. If the wire can withstand a maximum tension of 900 N, what is the maximum distance that the bear can walk before the wire breaks? ←x 60.0⁰ Goodiesarrow_forwardASK YOUR TEACHER PRACTICE ANOTHER The chewing muscle, the masseter, is one of the strongest in the human body. It is attached to the mandible (lower jawbone) as shown in figure (a). The jawbone is pivoted about a socket just in front of the auditory canal. The forces acting on the jawbone are equivalent to those acting on the curved bar in figure (b). DETAILS SERCP11 8.3.P.033. Mandible magnitude of R magnitude of Masseter Need Help? -7.50 cm - 3.50 cm is the force exerted by the food being chewed against the jawbone, is the force of tension in the masseter, and is the force everted by the socket on the mandible. Find and i (in N) for a person who bites down on a piece of steak with a force of 53.5 N MY NOTESarrow_forwardThe figure below shows an outstretched arm (0.61 m in length) that is parallel to the floor. The arm is pulling downward against the ring attached to the pulley system, in order to hold the 98 N weight stationary. To pull the arm downward, the latissimus dorsi muscle applies the force M in the figure, at a point that is 0.069 m from the should joint and oriented at an angle of 29°. The arm has a weight of 47 N and a center of gravity (cg) that is located 0.28 m from the shoulder joint. 0.61 m 0.28 m 0.069 m Axis at 98 N shoulder joint cg 29 Aldentify all the forces on the arm and draw an accurate and complete free body diagram on both the arm and the 98 N weight. You may draw on the figure if you wish. B Write down the correct equation of motion ON THE 98 N WEIGHT by summing all the forces acting on it using Newton's 2nd Law of Motion. You must identify and draw your chosen coordinate system. ( Write down the correct equation of motion ON THE ARM by summing all the forces acting on it…arrow_forward
- A 4 kg cat sits on a 30 kg, 4 m long beam that is supported by a cable. She sits 0.5 m in from the right, and the cable is supporting the beam at a point 1 m in from the left. The beam is free to rotate at the hinge. What is the tension in the cable and horizontal and vertical forces exerted by the hinge? What direction do the vertical and horizontal forces point?arrow_forwardA uniform rod is set up so that it can rotate about an axis at perpendicular to one of its ends. The length and mass of the rod are 0.765 m and 1.27 kg respectively. A force of constant magnitude ?F acts on the rod at the end opposite the rotation axis. The direction of the force is perpendicular to both the rod's length and the rotation axis. Calculate the value of ?F that will accelerate the rod from rest to an angular speed of 6.21 rad/s in 9.91 sarrow_forwardA beam resting on two pivots has a length of L = 6.00 m and mass M = 77.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot placed a distance ℓ = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 61.5 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip. (a) Use the force equation of equilibrium to find the value of n2 when the beam is about to tip. (b) Using the result of part (c) and the torque equilibrium equation, with torques computed around the second pivot point, find the woman's position when the beam is about to tip.x = (c) Check the answer to part (e) by computing torques around the first pivot point.x = (d)Except for possible slight differences due to rounding, is the answer the same for F and E?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON