Database System Concepts
Database System Concepts
7th Edition
ISBN: 9780078022159
Author: Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher: McGraw-Hill Education
Bartleby Related Questions Icon

Related questions

Question

could you please code this on notepade. 

The Feistel cipher is a symmetric block cipher encryption framework which is the basis
of many modern day encryption algorithms. In this coursework you will implement a
Feistel cipher system as a hardware component and as a software implementation. In a
Feistel cipher the plaintext, P, to be encrypted is split into two equal size parts Lo and
Ro such thatP = L,Ro- A function F is applied to one half of the plaintext, combined
with a key, and the result is XOR'd with the other half of the plaintext. Feistel ciphers
often employ multiple rounds of this scheme. In general the scheme works as follows, for
all i = 0, .. . , n,
L;+1= R;
R+1 = L; © F(R, K;)
To decrypt an encrypted message using this cipher we can apply the same procedure
in reverse. For i = n, n – 1, . , 0,
R; = L,+1
Lat1
L, = R,-1 e F(L,-1, K.)
For this coursework we are interested in the 16-bit Feistel cipher which uses 4 rounds.
The function F(A, B) = AOB. The keys are derived from a single 8-bit key Ko such that,
Ko = b,b6b;b4b3bzbi bo
K1 = b6b5b,b3b2bibob,
K2 = b;b,bzb,b,bob-b6
K3 = b,b3b2b1bob-b6b5
1
expand button
Transcribed Image Text:The Feistel cipher is a symmetric block cipher encryption framework which is the basis of many modern day encryption algorithms. In this coursework you will implement a Feistel cipher system as a hardware component and as a software implementation. In a Feistel cipher the plaintext, P, to be encrypted is split into two equal size parts Lo and Ro such thatP = L,Ro- A function F is applied to one half of the plaintext, combined with a key, and the result is XOR'd with the other half of the plaintext. Feistel ciphers often employ multiple rounds of this scheme. In general the scheme works as follows, for all i = 0, .. . , n, L;+1= R; R+1 = L; © F(R, K;) To decrypt an encrypted message using this cipher we can apply the same procedure in reverse. For i = n, n – 1, . , 0, R; = L,+1 Lat1 L, = R,-1 e F(L,-1, K.) For this coursework we are interested in the 16-bit Feistel cipher which uses 4 rounds. The function F(A, B) = AOB. The keys are derived from a single 8-bit key Ko such that, Ko = b,b6b;b4b3bzbi bo K1 = b6b5b,b3b2bibob, K2 = b;b,bzb,b,bob-b6 K3 = b,b3b2b1bob-b6b5 1
The Feistel cipher is a symmetric block cipher encryption framework which is the basis
of many modern day encryption algorithms. In this coursework you will implement a
Feistel cipher system as a hardware component and as a software implementation. In a
Feistel cipher the plaintext, P, to be encrypted is split into two equal size parts Lo and
Ro such thatP = L,Ro- A function F is applied to one half of the plaintext, combined
with a key, and the result is XOR'd with the other half of the plaintext. Feistel ciphers
often employ multiple rounds of this scheme. In general the scheme works as follows, for
all i = 0, .. . , n,
L;+1= R;
R+1 = L; © F(R, K;)
To decrypt an encrypted message using this cipher we can apply the same procedure
in reverse. For i = n, n – 1, . , 0,
R; = L,+1
Lat1
L, = R,-1 e F(L,-1, K.)
For this coursework we are interested in the 16-bit Feistel cipher which uses 4 rounds.
The function F(A, B) = AOB. The keys are derived from a single 8-bit key Ko such that,
Ko = b,b6b;b4b3bzbi bo
K1 = b6b5b,b3b2bibob,
K2 = b;b,bzb,b,bob-b6
K3 = b,b3b2b1bob-b6b5
1
expand button
Transcribed Image Text:The Feistel cipher is a symmetric block cipher encryption framework which is the basis of many modern day encryption algorithms. In this coursework you will implement a Feistel cipher system as a hardware component and as a software implementation. In a Feistel cipher the plaintext, P, to be encrypted is split into two equal size parts Lo and Ro such thatP = L,Ro- A function F is applied to one half of the plaintext, combined with a key, and the result is XOR'd with the other half of the plaintext. Feistel ciphers often employ multiple rounds of this scheme. In general the scheme works as follows, for all i = 0, .. . , n, L;+1= R; R+1 = L; © F(R, K;) To decrypt an encrypted message using this cipher we can apply the same procedure in reverse. For i = n, n – 1, . , 0, R; = L,+1 Lat1 L, = R,-1 e F(L,-1, K.) For this coursework we are interested in the 16-bit Feistel cipher which uses 4 rounds. The function F(A, B) = AOB. The keys are derived from a single 8-bit key Ko such that, Ko = b,b6b;b4b3bzbi bo K1 = b6b5b,b3b2bibob, K2 = b;b,bzb,b,bob-b6 K3 = b,b3b2b1bob-b6b5 1
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education