
Chemistry
10th Edition
ISBN: 9781305957404
Author: Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
The equilibrium constant for the reaction 2HI (g) ⇌ H2 (g) + I2 (g) is 115. If 2.7 mol HI is put into a 1.00 L flask, what will be the concentration of H2 at equilibrium?
Report your answer to two significant figures.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider the following equilibrium system at 355 K. 2NOBr(g) -----> 2NO(g)+Br2(g). If an equilibrium mixture of the three gases at 355 K contains 3.21x10^-2 M NOBr, 2.01x10^-2 M NO,and 3.98x10^-2 M Br2 what is the value of the equilibrium constant Karrow_forwardAt a certain temperature, the equilibrium constant K for the following reaction is 0.71: N2(g) + O2(g) =2 NO(g) Use this information to complete the following table. Suppose a 43. L reaction vessel is filled with 1.0 mol of NO. What can you say about the composition of the mixture in the vessel at equilibrium? There will be very little N2 and 02. There will be very little NO. Neither of the above is true. What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. K =0 2 NO(g) N,(9)+O2(9) What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. K = 3 N2(9)+30,(9) 6 NO(g)arrow_forwardGeneral Chemistry 4th Edition McQuarrie Rock Gallogly University Science Books presented by Macmillan Learning For the chemical equation SO, (g) + NO, (g) = SO,(g) + NO(g) the equilibrium constant at a certain temperature is 2.10. At this temperature, calculate the number of moles of NO, (g) that must be added to 2.64 mol SO, (g) in order to form 1.20 mol SO, (g) at equilibrium. 3 moles of NO,(g): mol 2. Question Source: MRG - General Chemistry | Publish privacy policy | help terms of use contact us about us careers (? ^ N EV prime video Warrow_forward
- 2. The compound NOCl decomposes to nitric oxide and chlorine according to the following equation: 2 NOCl (g) → 2 NO (g) + Cl2 (g) Suppose that 0.810 mol NOCl is placed in a 4.00-L flask at a given temperature. When equilibrium has been established, it is found that the concentration of Cl2 is 0.0105 M. Calculate the equilibrium constant for this reaction.arrow_forwardAt a certain temperature, the equilibrium constant K for the following reaction is 0.0036: H₂(g) + 1₂(g) → 2 HI(g) Use this information to complete the following table. O There will be very little H₂ and I2. Suppose a 6.0 L reaction vessel is filled with 1.9 mol of H₂ and 1.9 mol of I₂. What can you say about the composition of the mixture in the vessel at equilibrium? O There will be very little HI. ONeither of the above is true. What is the equilibrium constant for the following reaction? Round your answer to 2 significant digits. K = 2 HI(g) H₂(9)+1₂(9) What is the equilibrium constant for the following reaction? Round your answer to 2 significant digits. K = 2 H₂(g) +21₂(g) 4 HI(g) 0x10 ?arrow_forwardPlease help.arrow_forward
- For the chemical equation: SO2(g) + NO2(g) SO3(g) + NO(g) The equilibrium constant at a certain temperature is 8.80. At this temperature, calculate the number of moles of NO2(g) that must be added to 6.20 mol SO2(g) in order to form 4.40 mol SO3(g) at equilibrium.arrow_forwardFor the chemical equation 2SO2(g) + NO2(g) 2SO3(g) + NO(g) The equilibrium constant at a certain temperature is 5.50. At this temperature, calculate the number of moles of NO2(g) that must be added to 1.20 mol SO2(g) in order to form 0.80 mol SO3(g) at equilibrium.arrow_forwardN2(g) and O2(g) can exist in equilibrium with NO(g), as shown below. The equilibrium constant at 25.0°C is 4.8 x 10-31. If initially there are 1.35 mol of nitrogen and 0.60 mol of oxygen in a 2.00 L vessel, find the equilibrium concentrations of each species. N2(g) + O2(g) → 2NO(g)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY