College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The electrons that are used in an electron microscope are accelerated through a potential difference of 70 kV.
a. Calculate the speed of the electrons using the Newtonian formula for kinetic energy.
b. Calculate the speed of the electrons using the relativistic formula for kinetic energy.
c. By what factor does the Newtonian result exceed the relativistic result?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Step 1: Calculation of the speed of the electrons using the Newtonian formula for kinetic energy:
VIEW Step 2: Calculation of the speed of the electrons using the relativistic formula for kinetic energy:
VIEW Step 3: Calculation of the factor does the Newtonian result exceed the relativistic result:
VIEW Solution
VIEW Trending nowThis is a popular solution!
Step by stepSolved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Unreasonable Results A proton has a mass of 1.671027 kg. A physicist measures the proton's total energy to be 50.0 MeV. (a) What is the proton's kinetic energy? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardProtons in an accelerator at the Fermi National Laboratory near Chicago are accelerated to an energy of 400 times their rest energy. (a) What is the speed of these protons? (b) What is their kinetic energy in MeV?arrow_forward(a) Calculate for a proton that has a momentum of 1.00 kgm/s. (b) What is its speed? Such protons form a rare component of cosmic radiation with uncertain origins.arrow_forward
- (a) Beta decay is nuclear decay in which an electron is emitted. If the electron is given 0.750 MeV of kinetic energy, what is its velocity? (b) Comment on how the high velocity is consistent with the kinetic energy as it compares to the rest mass energy of the electron.arrow_forwardA chain of nuclear reactions in the Suns core converts four protons into a helium nucleus. (a) What is the mass difference between four protons and a helium nucleus? (b) How much energy in MeV is released during the conversion of four protons into a helium nucleus?arrow_forwardAlpha decay is nuclear decay in which a helium nucleus is emitted. If the helium nucleus has a mass of 6.801027 kg and is given 5.00 MeV of kinetic energy, what is its velocity?arrow_forward
- The sun energy at a rate of 3.85×10 26 W by the fusion of hydrogen. About 0.7% of each kilogram of hydrogen goes into the energy generated by the Sun. (a) How many kilograms of hydrogen undergo fusion each second? (b) If the sun is 90.0% hydrogen and half of this can undergo fusion before the sun changes character, how long could it produce energy at its current rate? (c) How many kilograms of mass is the sun losing per second? (d) What fraction of its mass will it have lost in the time found in part (b)?arrow_forwardThe radius of circular electron orbits in the Bohr model of the hydrogen atom are given by (5.29 1011 m)n2, where n is the electron's energy level (Fig. P6.79). The speed of the electron in each energy level is (c/137n), where c = 3 108 m/s is the speed of light in vacuum, a. What is the centripetal acceleration of an electron in the ground state (n = 1) of the Bohr hydrogen atom? b. What are the magnitude and direction of the centripetal force acting on an electron in the ground state? c. What are the magnitude and direction of the centripetal force acting on an electron in the n = 2 excited state?arrow_forwardAn astronaut wishes to visit the Andromeda galaxy, making a one-way trip that will take 30.0 years in the space-ships frame of reference. Assume the galaxy is 2.00 million light-years away and his speed is constant. (a) How fast must he travel relative to Earth? (b) What will be the kinetic energy of his spacecraft, which has mass of 1.00 106 kg? (c) What is the cost of this energy if it is purchased at a typical consumer price for electric energy, 13.0 cents per kWh? The following approximation will prove useful: 11+x1x2forx1arrow_forward
- (a) What is the kinetic energy in MeV of a ray that is traveling at 0.998c? This gives some idea of how energetic a ray must be to travel at nearly the same speed as a ray. (b) What is the velocity of the ray relative to the ray?arrow_forwardWhat is the velocity of an electron that has a momentum of 3.041021kgm/s ? Note that you must calculate the velocity to at least four digits to see the difference from c.arrow_forwardAn interstellar space probe is launched from Earth. After a brief period of acceleration, it moves with a constant velocity, 70.0% of the speed of light. Its nuclear-powered batteries supply the energy to keep its data transmitter active continuously. The batteries have a lifetime of 15.0 years as mean red in a rest frame. (a) How long do the batteries on the space probe last as measured by mission control on Earth? (b) How far is the probe from Earth when its batteries fail as measured by mission control? (c) How far is the probe from Earth as measured by its built-in trip odometer when its batteries fail? (d) For what total time after launch are data received from the probe by mission control? Note that radio waves travel at the speed of light and till the space between the probe and Earth at the time the battery fails.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning