College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The Earth’s atmosphere consists primarily of oxygen (21%) and nitrogen (78%). The rms speed of oxygen molecules (O2) in the atmosphere at a certain location is 535 m/s. (a) What is the temperature of the atmosphere at this location? (b) Would the rms speed of nitrogen molecules (N2) at this location be higher, equal to, or lower than 535 m/s? Explain. (c) Determine the rms speed of N2 at his location.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two moles of a helium gas are at a temperature of 260 K. Calculate the average kinetic energy per atom, the root-mean-square (rms) speed of atoms in the gas, and the internal energy of the gas. HINT (a) the average kinetic energy per atom (in J) J (b) the root-mean-square (rms) speed (in m/s) of atoms in the gas m/s (c) the internal energy of the gas (in J) Jarrow_forwardA sample of carbon dioxide (CO₂) has a volume of 0.04 m³. The gas has a pressure of 1.6 x 106 Pa and its temperature is 24 degrees C. List of atomic mass units can be found HERE a) What is the mass of the whole sample of gas? b) How many molecules are in the cylinder? c) What is the average kinetic energy per molecule? d) What is the rms speed of the molecules?arrow_forwardThe temperature of an ideal monatomic gas is increased from 25C to 50C. Does the average translational kinetic energy of each gas atom double? Explain. If your answer is no, what would the final temperature be if the average translational kinetic energy was doubled?arrow_forward
- A krypton-84 atom has a mass of 1.39 x 10-25 kg. (a) What temperature (in K) would a gas composed entirely of krypton-84 atoms have to be at in order for the rms speed of the atoms to equal the escape speed from Earth, 1.12 x 10 m/s? K (b) What temperature (in K) would a gas composed entirely of krypton-84 atoms have to be at in order for the rms speed of the atoms to equal the escape speed from the Moon, 2.37 x 10 m/s? Karrow_forwardThe rms speed of the molecules in 1.2 g of hydrogen gas is 1800 m/s. Part A What is the total translational kinetic energy of the gas molecules? Express your answer with the appropriate units. Etotal = 1.9 kJ Submit ✓ Correct Part B Previous Answers What is the thermal energy of the gas? Express your answer with the appropriate units. Eth = 1944 Submit μA Previous Answers Request Answerarrow_forwardA research group recently made an interesting discovery, while studying laser interactions with molecular gases. They found that nitrous oxide molecules (mass 44.013 g per mole) can reach temperatures exceeding 1,648 degrees Celsius after a interacting with a few closely-spaced (in time) laser pulses. At this temperature, what is the rms speed (in m/s) of a nitrous oxide molecule?arrow_forward
- 1) Calculate the correct values of both the questions.arrow_forwardYou have a container of neon (Ne) gas at 290 K. The volume of the container is 0.1 m3 and the pressure is 2.1 atm. a) How many Ne atoms are in the container? b) How many moles of Ne are in the container?arrow_forward(a) How many atoms of helium gas fill a spherical balloon of diameter 30.6 cm at 23.0°C and 1.00 atm? |x What is the relationship between pressure, volume and temperature for an ideal gas? atoms (b) What is the average kinetic energy of the helium atoms? 0.0000000000 (c) What is the rms speed of the helium atoms? You do not need to use your result from part (b) to find the answer to this part. km/sarrow_forward
- Suppose that the rms speed of carbon dioxide molecules, with molar mass of 44.0 g/mol, in a flame is found to be 1.2 × 105 m/s a.What temperature, in kelvins, does this represent? b. What temperature, in celsius does this represent?arrow_forwardDr. Chini's research group recently made an interesting discovery, while studying laser interactions with molecular gases. They found that nitrous oxide molecules (mass 44.013 g per mole) can reach temperatures exceeding 745 degrees Celsius after a interacting with a few closely-spaced (in time) laser pulses. At this temperature, what is the rms speed (in m/s) of a nitrous oxide molecule?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON