College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The earth is 150 × 10^9 m from the Sun. Earth and Sun masses are 5.97 × 10)^24 ?? and 1.99 × 10^30 ??, respectively. (a) Find the gravitational attraction between the Earth and the Sun. (b) Find the orbital period of the Earth around the Sun based on these numbers.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two objects attract each other with a gravitational force of magnitude 1.02 10-8 N when separated by 19.8 cm. If the total mass of the two objects is 5.06 kg, what is the mass of each?arrow_forwardTwo spherical objects have a combined mass of 160 kg . The gravitational attraction between them is 7.61×10−6 NN when their centers are 21.0 cm apart. What is the mass of the heavier object? What is the mass of the lighter object?arrow_forwardAn Earth satellite has an orbital period of 5.3 h. What is its orbital radius? (ME = 5.98 x 1024 kg)arrow_forward
- A 200 kg satellite is placed into orbit around the Earth with a radius of 4.23 x 107 m. The mass of the Earth is about 6 x 1024 kg. (a) Find the gravitational force on the satellite.(b) Use the equation of centripetal force to find the speed of the satellite.arrow_forwardIf the gravitational force is 8 N originally and the distance is decreased by a factor of 1/5, what is the resulting force?arrow_forwardThe gas-giant planet Rom (mass 5.7⨯1026 kg) goes around the star Galla (mass 2.0⨯1030 kg) in a circular orbit. If the orbital radius of Rom is 2.5×1011 m … Note: G = 6.67⨯10-11 N·m2/kg2 i) What is the gravitational force of Rom on Galla?arrow_forward
- (a) Based on the observations, determine the total mass M of the planet. (b) Which moon and planet of our solar system is the team observing? (Use literature.)arrow_forwardA planet requires 340 (Earth) days to complete its circular orbit around its sun, which has a mass of 7.5 x 1030 kg. What are the planet's (a) orbital radius and (b) orbital speed?arrow_forwardScientists have discovered a distant planet with a mass of 8.2x1023 kg. The planet has a small moon that orbits with a period of 6 hours and 36 minutes. Use only this information (and the value of G) to calculate the radius of the moon's orbit (in units of 106 m).arrow_forward
- (a) Calculate the distance from the Earth's surface of the point which the gravitational field strength is zero, given the following data: Distance between the Earth and the Moon = 384 000 km; Mass of the Earth = 5.98 x 10^24 kg; Mass of the Moon = 7.35 x 10^22 kg; Radius of the Earth = 6.37 x 10^6 m (b) If a small mass is placed at this point, does is receive gravity force? Is the gravitational potential energy at this point equal to 0? Explain your answer.arrow_forwardAstronomical observations of our Milky Way galaxy indicate that it has a mass of about 8.0 • 1011 solar masses. A star orbiting on the galaxy’s periphery is about 6.0 • 104 light years from its center. a) What should the orbital period of that star be in years? b) If its period is 6.0 • 107 years instead, what is the mass of the galaxy in solar masses? Such calculations are used to imply the existence of “dark matter” in the universe and have indicated, for example, the existence of very massive black holes at the centers of some galaxies.arrow_forwardDuring a solar eclipse, the Moon is positioned directly between Earth and the Sun. The masses of the Sun, Earth, and the Moon are 1.99 × 10³0 kg, 5.98 × 1024 kg, and 7.36 × 1022 kg, respectively. The Moon's mean distance from Earth is 3.84 × 108 m, and Earth's mean distance from the Sun is 1.50 × 10¹¹ m. The gravitational constant is G = 6.67 × 10-¹1 N-m²/kg². Find the magnitude F of the net gravitational force acting on the Moon during the solar eclipse due to both Earth and the Sun. F = What is the direction of this force? toward Earth toward Venus toward the Sun elsewhere Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON