College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
the earth has a mass of 5.97 x 10^24 kg and the sun has a mass of 2.00 x 10^30 kg. If they are separated by a distance of 1.50 x 10^8 km what is the force in N between the earth and sun?
Expert Solution
arrow_forward
Step 1
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the force of attraction between a 80.5 kg dog and a 32.8 kg cat sitting 2.20 m apart? 3.64×10-8 N 8.01×10-8 N 1.11×10-9 N 4.52×10-10 Narrow_forwarda)find the magnitude of the gravitational force (in N) between a planet with mass 9.00 ✕ 1024 kg and its moon, with mass 2.20 ✕ 1022 kg, if the average distance between their centers is 2.20 ✕ 108 m. = N b)What is the moon's acceleration (in m/s2) toward the planet? (Enter the magnitude.) What is the planet's acceleration (in m/s2) toward the moon? (Enter the magnitude.)arrow_forwardTwo spherical objects have a combined mass of 160 kg . The gravitational attraction between them is 7.61×10−6 NN when their centers are 21.0 cm apart. What is the mass of the heavier object? What is the mass of the lighter object?arrow_forward
- Two wrestlers, 0.025 m apart, exert a 2.8 x 10-3 N gravitational force on each other. One has a mass of 157 kg. What is the other’s mass?arrow_forwardHINT M. kg (a) Find the magnitude of the gravitational force (in N) between a planet with mass 6.50 x 1024 and its moon, with mass 2.55 x 10 kg, if the average distance between their centers is d= 2.90 x 108 m. %3D N (b) What is the moon's acceleration (in m/s2) toward the planet? (Enter the magnitude.) m/s? (c) What is the planet's acceleration (in m/s²) toward the moon? (Enter the magnitude.) m/s2arrow_forwardNewton's law of universal gravitation is represented by Mm F = G- where F is the gravitational force, M and m are masses, and r is a length. Force has the SI units kg · m/s2. What are the SI units of the proportionality constant G? m3 kg - s2 m kg ·s3 m2 kg · s2 m2 kg · 3arrow_forward
- (a) Find the magnitude of the gravitational force (in N) between a planet with mass 8.25 ✕ 1024 kg and its moon, with mass 2.20 ✕ 1022 kg, if the average distance between their centers is 2.20 ✕ 108 m. ___N (b) What is the moon's acceleration (in m/s2) toward the planet? (Enter the magnitude.) ___m/s2 (c) What is the planet's acceleration (in m/s2) toward the moon? (Enter the magnitude.) ___m/s2arrow_forwardWhen the Moon is directly overhead at sunset, the force by Earth on the Moon, FEM, is essentially at 90° to the force by the Sun on the Moon, FSM, as shown below. FEM=1.98×10^20N and FSM=4.36×10^20N, all other forces on the Moon are negligible, and the mass of the Moon is 7.35×10^22kg. 1. Write an expression for the magnitude of the acceleration of the Moon. 2. What is the acceleration of the Moon in m/s^2?arrow_forwardThe radius of Earth is 6.4 x 106 m. Its orbital radius around the Sun is 1.5 x 10¹¹ m. The masses of Earth and the Sun, respectively, are 6 x 1024 kg and 2 x 1030 kg. What is the magnitude of the gravitational force of attraction between Earth and the Sun? 3.6x102² N 5.3x10³³ N 2.0x10³¹ N 31 01. 2x10³8 Narrow_forward
- A planet has a mass of 6.90 × 1023 kg and a radius of 2.89 × 106 m. (a) What is the acceleration due to gravity on this planet? (b) How much would a 74.8-kg person weigh on this planet?arrow_forward(a) Find the magnitude of the gravitational force (in N) between a planet with mass 8.75 x 1024 kg and its moon, with mass 2.65 x 1022 kg, if the average distance between their centers is 2.90 x 108 m. Narrow_forwardConcern the planet Mars, which has a radius of 3400 km. On Mars, the acceleration due to gravity is 3.72 m/s^2 The mass of the sun is 2.0×1030 kg, while the (actual) mass of Mars is 6.4×1023 kg. The average distance from Mars to the sun is 228 million kilometers. a. What is the gravitational force acting on Mars due to the sun? What is the reaction force to this force? Name or explain the force; don’t give a value. b. What are the speed and angular velocity of Mars? Compare the values to those of Earth. c. Using only information provided above, estimate the length of a year on Mars. Compare the value to that of Earth.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON