The diameters of ball bearings are distributed normally. The mean diameter is 53 millimeters and the variance is 25. Find the probability that the diameter of a selected bearing is greater than 48 millimeters. Round your answer to four decimal places. Answer Keypad Keyboard Shortcut Normal Table-to-z -2.8 -2.7 -2.6 -2.5 -2.4 Z 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 -3.4 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 -3.3 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 -3.2 0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007 -3.1 0.0007 0.0007 0.0008 0.0008 0.0008 0.0008 0.0009 0.0009 0.0009 0.0010 -3.0 0.0010 0.0010 0.0011 0.0011 0.0011 0.0012 0.0012 0.0013 0.0013 0.0013 -2.9 0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018 0.0019 0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025 0.0026 0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045 0.0047 0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060 0.0062 0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080 0.0082 -2.3 0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104 0.0107 -2.2 0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139 -2.1 0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179 -2.0 0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222 0.0228 -1.9 0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287 -1.8 0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359 -1.7 0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446 -1.6 0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548 -1.5 0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.0668 -1.4 0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793 0.0808 -1.3 0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951 0.0968 -1.2 0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131 0.1151 -1.1 0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335 0.1357 -1.0 0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562 0.1587 -0.9 0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814 0.1841 -0.8 0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090 0.2119 -0.7 0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389 0.2420 -0.6 0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709 0.2743 -0.5 0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050 0.3085 -0.4 0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409 0.3446 -0.3 0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783 0.3821 -0.2 0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168 0.4207 -0.1 0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562 0.4602 -0.0 0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960 0.5000 Tables If you would like to look up the value in a table, select the table you want to view, then either click the cell at the intersection of the row and column or use the arrow keys to find the appropriate cell in the table and select it using the Space key.

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
Certainly! Below is a transcription of the normal distribution table (also known as the z-table) shown in the image. This table provides cumulative probabilities of the standard normal distribution from negative infinity to z.

### Normal Distribution Table (Z-Table)

The table is organized with `z` scores in the first column and probabilities in the remaining columns. Each cell in the table provides the probability that a standard normal random variable will be less than or equal to the corresponding z-score.

#### Table Structure:

- **z column**:
  - Lists the z-scores (standard deviations from the mean) in increments of 0.1, ranging from 0.0 to 3.4.
  
- **Columns 0.00 to 0.09**:
  - Each row under these columns represents the probability for the z-score in that row plus the additional value from the column header.

#### Excerpt from the Table:

| z     | 0.00  | 0.01  | 0.02  | 0.03  | 0.04  | 0.05  | 0.06  | 0.07  | 0.08  | 0.09  |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.0   | 0.5000| 0.5040| 0.5080| 0.5120| 0.5160| 0.5199| 0.5239| 0.5279| 0.5319| 0.5359|
| 0.1   | 0.5398| 0.5438| 0.5478| 0.5517| 0.5557| 0.5596| 0.5636| 0.5675| 0.5714| 0.5753|
| 0.2   | 0.5793| 0.5832| 0.5871| 0.5910| 0.5948| 0.5987| 0.6026| 0.6064| 0.6103| 0.6141|
| 0.3   | 0.6179| 0.6217| 0.6255|
Transcribed Image Text:Certainly! Below is a transcription of the normal distribution table (also known as the z-table) shown in the image. This table provides cumulative probabilities of the standard normal distribution from negative infinity to z. ### Normal Distribution Table (Z-Table) The table is organized with `z` scores in the first column and probabilities in the remaining columns. Each cell in the table provides the probability that a standard normal random variable will be less than or equal to the corresponding z-score. #### Table Structure: - **z column**: - Lists the z-scores (standard deviations from the mean) in increments of 0.1, ranging from 0.0 to 3.4. - **Columns 0.00 to 0.09**: - Each row under these columns represents the probability for the z-score in that row plus the additional value from the column header. #### Excerpt from the Table: | z | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | |-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 0.0 | 0.5000| 0.5040| 0.5080| 0.5120| 0.5160| 0.5199| 0.5239| 0.5279| 0.5319| 0.5359| | 0.1 | 0.5398| 0.5438| 0.5478| 0.5517| 0.5557| 0.5596| 0.5636| 0.5675| 0.5714| 0.5753| | 0.2 | 0.5793| 0.5832| 0.5871| 0.5910| 0.5948| 0.5987| 0.6026| 0.6064| 0.6103| 0.6141| | 0.3 | 0.6179| 0.6217| 0.6255|
**Understanding Probability with the Normal Distribution Table**

The diameters of ball bearings are distributed normally. The mean diameter is 53 millimeters, and the variance is 25. To find the probability that the diameter of a selected bearing is greater than 48 millimeters, you would use the Normal Distribution Table, as provided below. Round your answer to four decimal places.

**Normal Distribution Table Explanation**

The table provided is a standard normal distribution table which shows values for the cumulative distribution function of the standard normal distribution (Z-table). This table is used to determine the probability that a standard normal random variable is less than or equal to a given value.

**How to Use the Table:**

1. **Identify the Z-Score:** Calculate the Z-score for your specific situation. This requires you to subtract the mean from your value of interest, and then divide by the standard deviation. The formula is:
   \[
   Z = \frac{(X - \mu)}{\sigma}
   \]
   where \( X \) is the value, \( \mu \) is the mean, and \( \sigma \) is the standard deviation (which is the square root of the variance).

2. **Find the Probability:** Locate the Z-score in the table to find the probability that a value is less than or equal to your specific value. 

3. **Interpreting the Table:** 
   - The leftmost column represents the Z-value's whole number and tenths place.
   - The top row shows the hundredths place of the Z-value.
   - At the intersection of your Z-value row and hundredths column, you find the cumulative probability.

4. **Calculate Your Probability:** Since you want the probability greater than a certain value, subtract the table value from 1.

**Normal Table Example:**

- For Z = -3.4, under column 0.09, the value is 0.0002.
- For Z = -3.0, the values range from 0.0013 at column 0.00 to 0.0025 at column 0.09.
- For Z = 0.0, the probabilities range from 0.5000 (at column 0.00) to 0.5359 (at column 0.09).

Remember, this table only shows values for Z-scores from -3.4 to 0.0. 

By following these steps and utilizing
Transcribed Image Text:**Understanding Probability with the Normal Distribution Table** The diameters of ball bearings are distributed normally. The mean diameter is 53 millimeters, and the variance is 25. To find the probability that the diameter of a selected bearing is greater than 48 millimeters, you would use the Normal Distribution Table, as provided below. Round your answer to four decimal places. **Normal Distribution Table Explanation** The table provided is a standard normal distribution table which shows values for the cumulative distribution function of the standard normal distribution (Z-table). This table is used to determine the probability that a standard normal random variable is less than or equal to a given value. **How to Use the Table:** 1. **Identify the Z-Score:** Calculate the Z-score for your specific situation. This requires you to subtract the mean from your value of interest, and then divide by the standard deviation. The formula is: \[ Z = \frac{(X - \mu)}{\sigma} \] where \( X \) is the value, \( \mu \) is the mean, and \( \sigma \) is the standard deviation (which is the square root of the variance). 2. **Find the Probability:** Locate the Z-score in the table to find the probability that a value is less than or equal to your specific value. 3. **Interpreting the Table:** - The leftmost column represents the Z-value's whole number and tenths place. - The top row shows the hundredths place of the Z-value. - At the intersection of your Z-value row and hundredths column, you find the cumulative probability. 4. **Calculate Your Probability:** Since you want the probability greater than a certain value, subtract the table value from 1. **Normal Table Example:** - For Z = -3.4, under column 0.09, the value is 0.0002. - For Z = -3.0, the values range from 0.0013 at column 0.00 to 0.0025 at column 0.09. - For Z = 0.0, the probabilities range from 0.5000 (at column 0.00) to 0.5359 (at column 0.09). Remember, this table only shows values for Z-scores from -3.4 to 0.0. By following these steps and utilizing
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON