Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
The compressors of a production facility maintain the compressed-air lines at a (gage) pressure of 700 kPa at 1400-m elevation, where the atmospheric pressure is 85.6 kPa. The average temperature of air is 15°C at the compressor inlet and 25°C in the compressed-air lines. The facility operates 4200 h/yr, and the average price of electricity is $0.10/kWh.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. An adiabatic air compressor compresses 10.4 L/s of air at 120 kPa and 20°C to 1000 kPa and 300°C. The constant pressure specific heat of air at the average temperature of 160°C = 433 K is cp= 1.018 kJ/kg.K. The gas constant of air is R = 0.287 kPa.m³/kg-K. 1 MPa 300°C Compressor 120 kPa 20°C Vus Determine the work required by the compressor. (You must provide an answer before moving on to the next part.) The work required by the compressor is -4.578 kJ/kg.arrow_forwardAnswer in box is incorrectarrow_forwardAir is compressed in an adiabatic compressor. Inlet and outlet conditions are 120kPa, 30 oC and 20 m/s; 1.4 MPa, 530 oC and 80 m/s. The surrounding air temperature is 25 oC. The inlet cross-sectional area is 0.013 m2. Assume Cp = 1005 J/kgK, R = 287 J/kgK, k = 1.4. Enter the amount of heat loss due to irreversibility resulting from the heat transfer from the compressor in kW (correct up to one decimal place.)arrow_forward
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY