Structural Analysis
Structural Analysis
6th Edition
ISBN: 9781337630931
Author: KASSIMALI, Aslam.
Publisher: Cengage,
Bartleby Related Questions Icon

Related questions

bartleby

Concept explainers

Question
The compressed air requirements of a textile factory are met by a large compressor that draws in 0.6 m³/s air at atmospheric
conditions of 20°C and 1 bar (100 kPa) and consumes 300 kW electric power when operating. Air is compressed to a gage pressure of
8 bar (absolute pressure of 900 kPa), and compressed air is transported to the production area through a 30-cm-internal-diameter, 83-
m-long, galvanized steel pipe with a surface roughness of 0.15 mm. The average temperature of compressed air in the pipe is
60°C. The compressed air line has 8 elbows with a loss coefficient of 0.6 each. If the compressor efficiency is 84 percent, determine
the power wasted in the transportation line. The roughness of a galvanized steel pipe is given to be ε = 0.00015 m. The dynamic
viscosity of air at 60°C is μ = 2.008 × 10-5 kg/m-s, and it is independent of pressure. The density of air listed in that table is for 1 atm.
The density at 20°C, 100 kPa and 60°C, 900 kPa can be determined from the ideal gas relation to be
Pin =
Pin
RT
100 kPa
(0.287 kPa-m³/kg-K)(20+273 K)
P= Pline =
= 1.189 kg/m³
Pline
900 kPa
RTline (0.287 kPa-m³/kg-K)(60+273 K)
The power wasted in the transportation line is 0.00483 kW.
= 9.417 kg/m³
expand button
Transcribed Image Text:The compressed air requirements of a textile factory are met by a large compressor that draws in 0.6 m³/s air at atmospheric conditions of 20°C and 1 bar (100 kPa) and consumes 300 kW electric power when operating. Air is compressed to a gage pressure of 8 bar (absolute pressure of 900 kPa), and compressed air is transported to the production area through a 30-cm-internal-diameter, 83- m-long, galvanized steel pipe with a surface roughness of 0.15 mm. The average temperature of compressed air in the pipe is 60°C. The compressed air line has 8 elbows with a loss coefficient of 0.6 each. If the compressor efficiency is 84 percent, determine the power wasted in the transportation line. The roughness of a galvanized steel pipe is given to be ε = 0.00015 m. The dynamic viscosity of air at 60°C is μ = 2.008 × 10-5 kg/m-s, and it is independent of pressure. The density of air listed in that table is for 1 atm. The density at 20°C, 100 kPa and 60°C, 900 kPa can be determined from the ideal gas relation to be Pin = Pin RT 100 kPa (0.287 kPa-m³/kg-K)(20+273 K) P= Pline = = 1.189 kg/m³ Pline 900 kPa RTline (0.287 kPa-m³/kg-K)(60+273 K) The power wasted in the transportation line is 0.00483 kW. = 9.417 kg/m³
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,
Text book image
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning