Question
![The laboratory operation of a Laser is related to
the atomic transition problem. Let E - E, = ho
for two atomic states, u(@) be the radiation
density, N be the number of atoms in state 1, and
N2 that in state 2. B12 is the Enstein coffeicent for
absorption, B21 that transition probability for
emission, and A the spontaneous emission
coefficient. Find N2/N1
O B12/[A+ B21]
O B1zu(@)/[A + B21u(@)]
O B1zu(@)/A
O B1zu(@)/B21
O Au(@)/B12
Questio
Not yet answered
Marked out of
P Flag question
Forbidden transitions and selection rules suggest
that
O a photon has energy
O a photon has mass
O a photon has linear momentum
O a photon has angular momentum
a photon has parity](https://content.bartleby.com/qna-images/question/b12ba1ca-9d08-4048-9351-baaf9c5d1857/cf535058-0638-4a6d-8795-cb7decab70b8/mxgr1sk_thumbnail.jpeg)
Transcribed Image Text:The laboratory operation of a Laser is related to
the atomic transition problem. Let E - E, = ho
for two atomic states, u(@) be the radiation
density, N be the number of atoms in state 1, and
N2 that in state 2. B12 is the Enstein coffeicent for
absorption, B21 that transition probability for
emission, and A the spontaneous emission
coefficient. Find N2/N1
O B12/[A+ B21]
O B1zu(@)/[A + B21u(@)]
O B1zu(@)/A
O B1zu(@)/B21
O Au(@)/B12
Questio
Not yet answered
Marked out of
P Flag question
Forbidden transitions and selection rules suggest
that
O a photon has energy
O a photon has mass
O a photon has linear momentum
O a photon has angular momentum
a photon has parity
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps

Knowledge Booster
Similar questions
- mh.8arrow_forward3. a) Alpha particles of the same initial speed are shot at the same intensity toward gold, silver, and aluminum foils of the same thickness. They are observed at a detector at a fixed scattering angle, 0 0°. What would the ratios of the number of alpha particles scattered by the gold and silver foils to the aluminum foil, No Au 13). NaAl and respectively, be? (ZAu = 79, ZAg = 47, ZAI Na Ag NaAl b) Compare the number of a particles of fixed kinetic energy scattered through an angle of 10° (call this Na(10°)) with the number scattered through an angle of 20° (Na (20°)) for Rutherford scattering by a thin gold foil of fixed thickness. Compute Na (10⁰) Na (20°). p2 Rutherford's scattering model assumes that the alpha particles experience a Coulomb repulsion, F = KqZe from the nucleus of the foil's atom. If, in a head-on collision the alpha particle has enough energy to get inside a uniformly charged Kqa Zer nucleus of radius R, the force law would change to F = R³ " point-nucleus…arrow_forwardConstants Ideal gas constant: = 8.314 J K mol- = 0.083 dm bar K mol = 0.082 dm atm K mol Avogadro's constant: NA = 6.022x1023 mol-! Boltzmann constant: k 1.38x1023 J K Speed of light: c = 3 x 10% m s Planck's constant: h = 6.626x1034 J s 1 bar = 105 Pa 1 atm = 101325 Pa Relations U = NKT²(n = + k In Q S = %3D A = -kT In Q G = -NkT In) R.arrow_forward
- In the 1980s, the term picowave was used to describe food irradiation in order to overcome public resistance by playing on the well-known safety of microwave radiation. Find the energy in MeV of a photon having a wavelength of a picometer.arrow_forwardhttps://www.compadre.org/PQP/quantum-need/prob4_5.cfm *Link to HW problemarrow_forward
arrow_back_ios
arrow_forward_ios