
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
An airliner arrives at the terminal, and the engines are shut off. The rotor of one of the engines has an initial clockwise
(a)Determine the angular velocity after 10.0 s.
(b) How long does it take the rotor to come to rest?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 40.0-cm diameter disk rotates with a constant angular acceleration of 2.90 rad/s2. It starts from rest at t = 0, and a line drawn from the center of the disk to a point P on the rim of the disk makes an angle of 57.3° with the positive x-axis at this time. (a) At t = 2.50 s, find the angular speed of the wheel. rad/s(b) At t = 2.50 s, find the magnitude of the linear velocity and tangential acceleration of P. linear velocity m/s tangential acceleration m/s2 (c) At t = 2.50 s, find the position of P (in degrees, with respect to the positive x-axis). ° counterclockwise from the +x-axisarrow_forwardA 40.0-cm diameter disk rotates with a constant angular acceleration of 2.70 rad/s. It starts from rest at t = 0, and a line drawn from the center of the disk to a point P on the rim of the disk makes an angle of 57.3° with the positive x-axis at this time. (a) At t = 2.40 s, find the angular speed of the wheel. rad/s (b) At t = 2.40 s, find the magnitude of the linear velocity and tangential acceleration of P. linear velocity m/s tangential acceleration m/s2 (c) At t = 2.40 s, find the position of P (in degrees, with respect to the positive x-axis). ° counterclockwise from the +x-axisarrow_forwardA 37.2-cm diameter disk rotates with a constant angular acceleration of 2.3 rad/s2. It starts from rest at t = 0, and a line drawn from the center of the disk to a point P on the rim of the disk makes an angle of 57.3° with the positive x-axis at this time. (a) Find the angular speed of the wheel at t = 2.30 s. rad/s(b) Find the linear velocity and tangential acceleration of P at t = 2.30 s. linear velocity m/s tangential acceleration m/s2 c) Find the position of P (in degrees, with respect to the positive x-axis) at t = 2.30s. °arrow_forward
- At time t=0 a grinding wheel has an angular velocity of 25.0 rad/s. It has a constant angular acceleration of 32.0 rad/s2 until a circuit breaker trips at time t= 1.80 s. From then on, the wheel turns through an angle of 433 rad as it coasts to a stop at constant angular deceleration. What was the wheel's angular acceleration as it slowed down?arrow_forwardThe angular speed of a rotating platform changes from ω0 = 3.6 rad/s to ω = 6.4 rad/s at a constant rate as the platform moves through an angle Δθ = 5.5 radians. The platform has a radius of R = 12 cm. Calculate the angular acceleration of the platform α in rad/s2.arrow_forwardAt time t=0, the angular velocity of a wheel is 4.55 rad/s. The wheel is accelerating with constant angular acceleration -7.42 rad/s2. After 0.386 s, find the magnitude of the linear acceleration (in m/s2) of a point on the wheel a distance 0.500 m from the axis of rotation.arrow_forward
- An electric fan is running on HIGH. After the speed setting is changed to LOW, the angular speed reduces to 800 rpm in 1.75 s. If the angular deceleration is a constant 42.0 rad/s², then find (a) the initial angular speed of the fan (when it was on HIGH) and (b) the number of revolutions that the fan turned through as it slowed from HIGH to LOW. (c) Include a diagram of the situation.arrow_forwardA ceiling fan is rotating counterclockwise with a constant angular acceleration of 0.50? rad/s2 about a fixed axis perpendicular to its plane and through its center. Assume the fan starts from rest. (a) What is the angular velocity of the fan after 2.0 s? (Enter the magnitude.) rad/s (b) What is the angular displacement of the fan after 2.0 s? (Enter the magnitude.) rad (c) How many revolutions has the fan gone through in 2.0 s? revarrow_forwardA wind turbine is initially spinning at a constant angular speed. As the wind's strength gradually increases, the turbine experiences a constant angular acceleration 0.107 rad/s². After making 2870 revolutions, its angular speed is 130 rad/s. (a) What is the initial angular velocity of the turbine? (b) How much time elapses while the turbine is speeding up? (a) Number i 129.848 Units rad/s (b) Number i 1.327 Units Sarrow_forward
- A wind turbine rotates at 15.8 rpm and has an angular acceleration of 0.0502 rad/s2. If the wind turbine takes 33.0 s to come to a complete stop, how many revolutions will this take?arrow_forwardA fan rotating with an initial angular velocity of 1000 rev/min is switched off. In 2 seconds, the angular velocity decreases to 200 rev/min. Assuming the angular acceleration is constant, how many revolutions does the blade undergo during this time?arrow_forwardA 42.0-cm diameter disk rotates with a constant angular acceleration of 3.00 rad/s2. It starts from rest at t = 0, and a line drawn from the center of the disk to a point P on the rim of the disk makes an angle of 57.3° with the positive x-axis at this time. (a) At t = 2.32 s, find the angular speed of the wheel. rad/s (b) At t = 2.32 s, find the magnitude of the linear velocity and tangential acceleration of P. linear velocity m/s tangential acceleration m/s2 (c) At t = 2.32 s, find the position of P (in degrees, with respect to the positive x-axis). _________° counterclockwise from the +x-axisarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON