
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The analysis of any two-point source interference pattern and a successful determination of wavelength demands an ability to sort through the measured information and equating the values with the symbols in Young's equation. Apply your understanding by interpreting the following statements and identifying the values of y, d, m and L. Finally, perform some conversions of the given information such that all information share the same unit.
a. Two slits separated by 0.250 mm produces an interference pattern in which the fifth dark band is located 12.8 cm from the central antinode when the screen is placed a distance of 8.2 meters away.
y= ________
d=________
m=_______
L=________
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two slits spaced 0.0720 mm apart are 0.800 m from a screen. Coherent light of wavelength > passes through the two slits. In their interference pattern on the screen, the distance from the center of the central maximum to the first minimum is 3.00 mm. The intensity at the peak of the central maximum is 0.0300 W/m². Part A What is the intensity at point on the screen that is 2.00 mm from the center of the central maximum? Express your answer with the appropriate units. НА ? undo W I= 0.03141 m² Submit Previous Answers Request Answer x Incorrect; Try Again; 5 attempts remaining Part B What is the intensity at point on the screen that is 1.50 mm from the center of the central maximum? Express your answer with the appropriate units. ? A I = Value Unitsarrow_forwardThe spacing between two slits is 5.90×10^-3 m in a Young's double slit experiment. The distance from the slits to the screen is 1.00 m, and the distance from the central bright maximum to the third maxima is 2.50x10^-4 m. Determine the wavelength of the incident light used in the experiment. Include a labelled diagram.arrow_forwardThe figure(Figure 1) shows the interference pattern on a screen 1.0 m behind an 970 line/mm diffraction grating. Figure Intensity H 89.7 cm / H 89.7 cm 43.6 cm 43.6 cm 1 of 1 Part A What is the wavelength of the light? Express your answer to two significant figures and include the appropriate units. λ = Submit O μA Value Provide Feedback Request Answer Units .... ?arrow_forward
- Establish the relevant theoretical model: Write an equation linking the distance between the two slits (d), the wavelength of the light source (2), the distance from the screen (L), the linear position (y) of the bright interference bangs and the order of these bangs (m). Use the small-angle approximation. Isolate, in this relationship, the linear position of the bright fringes. Draw a graph of y as a function of m.arrow_forwardThe following problem must be solved taking into consideration the modification given below: A student holds a laser that emits light of wavelength 545 nm. The laser beam passes though a pair of slits separated by 0.500 mm, in a glass plate attached to the front of the laser. The beam then falls perpendicularly on a screen, creating an interference pattern on it. The student begins to walk directly toward the screen at 2.00 m/s. The central maximum on the screen is stationary. Find the speed at which the 5th-order maxima changes its position on the screen. Do not use small angle approximation. Modification: Suppose there is a liquid in the space between the slits and the screen. Give such liquid any refractive index you desire (numerical value). Also suppose that the screen has a finite lenght (give another numerical value). Besides calculating the speed at which the 5th-order maxima changes its position on the screen also calculate the initial value of bright fringes according to the…arrow_forwardIn an interference experiment using a monochromatic source emitting light of wavelength 1, the fringes are produced by two long, narrow slits separated by a distance d. The fringes are formed on a screen which is situated at a distance D >> d.Write down an expression for the fringe width w. Please use "*" for products (e.g. B*A), "/" for ratios (e.g. B/A) and the usual "+" and "-" signs as appropriate. Use "lambda" (without the quotes) for 1 in the equation box. For example, use d*lambda for d2. Please use the "Display response" button to check you entered the answer you expect. w=arrow_forward
- ANSWER #2 A-C from the image providedarrow_forwardQuestion 1: Solve the following question, showing all of your steps and equation used. Assume that you create two slits that are 0.02 mm apart, and you place a viewing screen 1 meter away. You shine a laser beam of wavelength A = 540 nm on the two slits. a. What is the angle of the brightest fringe? b. What is the angle of the first order interference fringe? c. What is the angle where you will see the third order bright fringe? How far above the center of the source do you expect to see this fringe?arrow_forwardThe analysis of any two-point source interference pattern and a successful determination of wavelength demands an ability to sort through the measured information and equating the values with the symbols in Young's equation. Apply your understanding by interpreting the following statements and identifying the values of y, d, m and L. Finally, perform some conversions of the given information such that all information share the same unit. If two slits 0.100 mm apart are separated from a screen by a distance of 300 mm, then the first-order minimum will be 1 cm from the central maximum. y= ________ d=________ m=_______ L=________arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON