College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Suppose you have a lens system that is to be used primarily for 680 nm red light. Calculate the second thinnest coating of fluorite (magnesium fluoride) that would be non-reflective for this wavelength. The index of refraction for the coating is 1.38.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 4. a. Determine the size of the Airy disk (in m) found at the center of a 4.00-cm diameter lens, with a focal length of 15.0 cm. Assume the incident light wavelength is the middle of the visible spectrum = 550. nm. b. In observational astronomy, we assume that stars, being so far away, are point sources of light, and that the image of a star in a telescope eyepiece is therefore also a point. Given that the average human near-field resolution is 0.10 mm, does your result in part a justify this assumption? Explain your answer, using the value from part a. c. Assume that the objective lens diffraction limit is the only one that matters on a telescope (actually a good assumption, not justified here). What is the angular size (in radians) of the smallest object that can be truly observed as a disk on the 4.00-cm telescope in part a? Can Jupiter (maximum angular size = 51 arc-seconds) be seen as a disk through this telescope? Note that real telescopes have glass or mirror imperfections which…arrow_forwardAn extremely thin sheet of glass is being inspected at the laboratory. Illuminated by white light at near-normal incidence, the film-like sheet is 0.371 µm thick and has air on both sides. If the glass has a refractive index of 1.66, what wavelength of visible light (in nm) does it reflect most strongly? (The wavelengths of visible light range from 400 to 700 nm.) nmarrow_forwardThe Rayleigh criterion provides a convenient way to describe the theoretical resolution (e.g. an ability to distinguish two bright objects ) of an optical system. The criterion states that two small bright sources of light can be resolved if the first diffraction minimum of the image of one source point just coincides with of further apart then the first maximum of another (see figure below). A converging lens, 31.5 mm in diameter, is used to form images of distant objects. Considering the diffraction by the lens, what angular separation must two distant point objects have in order to satisfy Rayleigh's criterion? Assume that the wavelength of the light from the distant objects is 516 nm. Provide your answer in millidegrees (mdeg).arrow_forward
- The Hubble Space Telescope (HST) orbits Earth at an altitude of 613 km. It has an objective mirror that is 2.40 m in diameter. If the HST were to look down on Earth's surface (rather than up at the stars), what is the minimum separation of two objects that could be resolved using 549 nm light? [IVote: The HST is used only for astronomical work, but a (classified) number of similar telescopes are in orbit for spy purposes.]arrow_forwardA convex lens is used to focus light waves to a pointwithin its focal length. The convex lens chosen has a refractive index is 1.5.This lens is placed over a glass plate in such a way it receives the incidentlight normally. What will be the radius of the 6th dark circle inthe achieved interference pattern of reflected rays from the air film created.Assuming the radius of curvature as 4m. The wavelength of the incident light is5890*10^-10marrow_forwardMourning doves have a small batch of iridescent feathers. The color isproduced by a 260-nm-thick layer of keratin (n = 1.56), with air on both sides that are found around the edge of the feather barbules. A mutant species of the mourning dove discussed above has the side ofthe keratin layer facing away from the incident light bound to a thin hard layer of material of index of refraction similar to that of diamond (n = 2.42). Both keratin and diamondlike material have thicknesses of 260nm. For what visible wavelength (or wavelengths) would this structure produce constructive interference? A) 1622nm, 811nm, 406nmB) 686nm, 541nm, 412nmC) 406nmD) 541nmE) 686nm, 412nmarrow_forward
- The Rayleigh criterion provides a convenient way to describe the theoretical resolution (e.g. an ability to distinguish two bright objects ) of an optical system. The criterion states that two small bright sources of light can be resolved if the first diffraction minimum of the image of one source point just coincides with of further apart then the first maximum of another (see figure below). A converging lens, 34.2 mm in diameter, is used to form images of distant objects. Considering the diffraction by the lens, what angular separation must two distant point objects have in order to satisfy Rayleigh's criterion? Assume that the wavelength of the light from the distant objects is 431 nm. Provide your answer in millidegrees (mdeg). Answer: Choose... +arrow_forwardA multi-mode fiber optic has a core index of n = 1.492 and a cladding index of 1.489. The diameter of the core is 30.0 microns. Monochromatic light is focused into one end of a perfectly straight fiber which is 25.0 km long. What will be the difference in arrival time at the far end of the fiber for the axial and marginal rays?arrow_forwardA diffraction grating with n = 2.5E-05 lines/nm is used to separate two colors of light. The angle between their first maxima is Δθ ≡ θ1 - θ2 = 0.44 degrees, and the first light has wavelength λ1 = 618 nm. Part (a) Find θ1 using n and λ1 in radians. Part (b) Find θ2 in radians. Part (c) Find the value of the wavelength of the second color λ2 in nm.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON