


Given independent normal random variables X1, ..., Xn ~ N(u, T^-1), and a normal random variable Z ~ N(u, T^-1), and the prior density of (T, u) given by
π(T, u; a, B, k, v) = βα(a) T^(-a-1) (2π)^(-1/2) (kT)^(-1/2) exp{-B/2T}
where βα(a) = Γ(a)/[Γ(a/2)π^(1/2)], and Γ(a) is the gamma function.
The posterior density of (T, u) given X1, ..., Xn is given by:
π(T, u|X1, ..., Xn; a', B', k', v') = β''α''(a'') T^(-a''-1) (2π)^(-1/2) (k''T)^(-1/2) exp{-B''/2T}
where β''α''(a'') = Γ(a''/[Γ(a''/2)π^(1/2)], and a'', B'', k'', and v'' are updated parameters given by:
a'' = a + n/2 B'' = B + (Σ(xi - u)² + n/(1+n/2)(Σxi/n - u)²)/2 k'' = k + n/2 v'' = (kv + Σti)/(k+n)
Now, the joint posterior density of (T, Z) given X1, ..., Xn is proportional to the likelihood times the prior, that is:
π(T, Z|X1, ..., Xn) ∝ f(X1, ..., Xn, Z|T, u) π(T, u; a', B', k', v')
where f(X1, ..., Xn, Z|T, u) is the joint density of the observed data and Z given T and u, which is given by:
f(X1, ..., Xn, Z|T, u) = (2π)^(-n/2) T^(-n/2) exp{-[(Z - u)^2 + Σ(Xi - u)^2]/(2T)}
Substituting the expressions for the prior and likelihood into the joint posterior density and simplifying, we obtain:
π(T, Z|X1, ..., Xn) = β'''α'''(a''') T^(-a'''-1) (2π)^(-1/2) (k'''T)^(-1/2) exp{-B'''/2T}
where β'''α'''(a''') = Γ(a'''/2)/[Γ(a'''+1/2)π^(1/2)], and a''', B''', k''', and v''' are updated parameters given by:
a''' = a'' + 1/2 B''' = B'' + (Z - u)^2/2 + k''/[2(T + n)](Z - v'')^2 k''' = k'' + 1/2 v''' = (kv'' + Z)/(k''' + 1)
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

- Let a, µ E R. Calculate f exp{-ax²/2+µx}dx. (Hint: recall that the PDF for a normal random variable Z ~ N(H, o2) is p(2) = (270²)-1/2 exp{-(z – µ)²/(20²)} and that p(z)dz = 1.)arrow_forwardPlease help mearrow_forward-) Suppose X and Y are continuous random variables. The range of X is [1,3], the range of Y is [0, 1]. The joint pdf of X and Y be given by f(x, y) = 2xy³ - 2y³. Verify if X and Y independent random variables.arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





