
MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
option: product/sum/division
![Certainly! Below is the transcription of the provided text with a detailed explanation suitable for an educational website:
---
### Understanding Likelihood Functions in Exponential Distributions
**Problem Statement:**
Suppose \( X_1, X_2, \cdots, X_n \) is a random sample from an exponential distribution with parameter \( \lambda \). Because of independence, the likelihood function is a [choice],[sum],[division] of the individual pdf's:
\[
f(x_1, \ldots, x_n; \lambda) = (\lambda e^{-\lambda x_1}) \times \cdots \times (\lambda e^{-\lambda x_n}) = \lambda^n e^{\lambda \sum x_i}
\]
### Detailed Explanation:
1. **Likelihood Function:**
- The likelihood function \( L(\lambda; x_1, \ldots, x_n) \) measures how likely it is that the observed data \( x_1, \ldots, x_n \) came from a distribution with parameter \( \lambda \).
2. **Exponential Distribution:**
- The probability density function (pdf) of an exponential distribution with parameter \( \lambda \) is given by \( f(x; \lambda) = \lambda e^{-\lambda x} \) for \( x \geq 0 \).
3. **Independence:**
- Given that \( X_1, X_2, \cdots, X_n \) are independent, the likelihood function for the entire sample is the product of the individual pdf's.
4. **Mathematical Derivation:**
- The joint likelihood function is derived as follows:
\[
L(\lambda; x_1, \ldots, x_n) = f(x_1; \lambda) \times f(x_2; \lambda) \times \cdots \times f(x_n; \lambda)
\]
\[
= (\lambda e^{-\lambda x_1}) \times (\lambda e^{-\lambda x_2}) \times \cdots \times (\lambda e^{-\lambda x_n})
\]
- This simplifies to:
\[
= \lambda^n e^{-\lambda (x_1 + x_2 + \cdots + x_n)}
\]
\[
= \lambda^n e^{-\lambda](https://content.bartleby.com/qna-images/question/fb989860-4d1c-4fb5-9e6b-42a4528dce9c/ecb009fe-bcc2-45fe-b23b-248eecd53c31/7bvzvy_thumbnail.jpeg)
Transcribed Image Text:Certainly! Below is the transcription of the provided text with a detailed explanation suitable for an educational website:
---
### Understanding Likelihood Functions in Exponential Distributions
**Problem Statement:**
Suppose \( X_1, X_2, \cdots, X_n \) is a random sample from an exponential distribution with parameter \( \lambda \). Because of independence, the likelihood function is a [choice],[sum],[division] of the individual pdf's:
\[
f(x_1, \ldots, x_n; \lambda) = (\lambda e^{-\lambda x_1}) \times \cdots \times (\lambda e^{-\lambda x_n}) = \lambda^n e^{\lambda \sum x_i}
\]
### Detailed Explanation:
1. **Likelihood Function:**
- The likelihood function \( L(\lambda; x_1, \ldots, x_n) \) measures how likely it is that the observed data \( x_1, \ldots, x_n \) came from a distribution with parameter \( \lambda \).
2. **Exponential Distribution:**
- The probability density function (pdf) of an exponential distribution with parameter \( \lambda \) is given by \( f(x; \lambda) = \lambda e^{-\lambda x} \) for \( x \geq 0 \).
3. **Independence:**
- Given that \( X_1, X_2, \cdots, X_n \) are independent, the likelihood function for the entire sample is the product of the individual pdf's.
4. **Mathematical Derivation:**
- The joint likelihood function is derived as follows:
\[
L(\lambda; x_1, \ldots, x_n) = f(x_1; \lambda) \times f(x_2; \lambda) \times \cdots \times f(x_n; \lambda)
\]
\[
= (\lambda e^{-\lambda x_1}) \times (\lambda e^{-\lambda x_2}) \times \cdots \times (\lambda e^{-\lambda x_n})
\]
- This simplifies to:
\[
= \lambda^n e^{-\lambda (x_1 + x_2 + \cdots + x_n)}
\]
\[
= \lambda^n e^{-\lambda
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 5 images

Knowledge Booster
Similar questions
- Please some de intgeadi %3D Vzx+3arrow_forwardSolue for 2. + Zax %3Darrow_forwardA software company is interested in improving customer satisfaction rate from the 60% currently claimed. The company sponsored a survey of 148 customers and found that 95 customers were satisfied. What is the test statistic z?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman

MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc

Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning

Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning

Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON

The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman