Suppose that car weighing 4000 pounds is supported by four shock absorbers Each shock absorber has a spring constant of 6500 lbs/foot, so the effective spring constant for the system of 4 shock absorbers is 26000 lbs/foot. 1. Assume no damping and determine the period of oscillation of the vertical motion of the car. Hint: g=32 ft/sec². T= 0.436 ✔seconds. 2. After 10 seconds the car body is 1 foot above its equilibrium position and at the high point in its cycle. What were the initial conditions ? y(0) = -0.436 X ft. and y'(0) = ft/sec. 3. Now assume that oil is added to each the four shock absorbers so that, together, they produce an effective damping force of -6.93 lb-sec/ft times the vertical velocity of the car body. Find the displacement y(t) from equilibrium if y(0)=0 ft and y(0)=-10 ft/sec. y(t) =
Suppose that car weighing 4000 pounds is supported by four shock absorbers Each shock absorber has a spring constant of 6500 lbs/foot, so the effective spring constant for the system of 4 shock absorbers is 26000 lbs/foot. 1. Assume no damping and determine the period of oscillation of the vertical motion of the car. Hint: g=32 ft/sec². T= 0.436 ✔seconds. 2. After 10 seconds the car body is 1 foot above its equilibrium position and at the high point in its cycle. What were the initial conditions ? y(0) = -0.436 X ft. and y'(0) = ft/sec. 3. Now assume that oil is added to each the four shock absorbers so that, together, they produce an effective damping force of -6.93 lb-sec/ft times the vertical velocity of the car body. Find the displacement y(t) from equilibrium if y(0)=0 ft and y(0)=-10 ft/sec. y(t) =
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 6 steps with 9 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,