" (Sum Rule): Suppose f: ℝⁿ → ℝᵐ and g: ℝⁿ → ℝᵐ are functions, and let a ∈ ℝⁿ and b, c ∈ ℝᵐ be points. If lim(x→a) f(x) = b and lim(x→a) g(x) = c, then lim(x→a) (f(x) + g(x)) = b + c. Proof: Assume that lim(x→a) f(x) = b and lim(x→a) g(x) = c. Let ε > 0 be arbitrary. Then there exists δ₁ > 0 such that for x ∈ Dom(f) with d(x,a) < δ₁, we have ||f(x) - b|| < ε/2 (Equation 1.9). Similarly, there exists δ₂ > 0 such that for x ∈ Dom(g) with d(x,a) < δ₂, we have ||g(x) - c|| < ε/2 (Equation 1.10). Take δ := min(δ₁, δ₂) and let x ∈ Dom(f + g) satisfy d(x,a) < δ. Since x ∈ Dom(f) and d(x,a) < δ₁, Equation 1.9 holds. Furthermore, x ∈ Dom(g) and d(x,a) < δ₂, so Equation 1.10 applies. We can combine these inequalities: ||f(x) + g(x) - (b + c)|| = ||(f(x) - b) + (g(x) - c)|| ≤ ||f(x) - b|| + ||g(x) - c|| < ε/2 + ε/2 = ε. This shows that for all x ∈ Dom(f + g) with d(x,a) < δ, we have ||f(x) + g(x) - (b + c)|| < ε. Therefore, f(x) + g(x) → b + c as x → a." I have this lemma in my analysis course, I am quite a bit confused, especially where "ε/2" comes from, if able please explain this lemma more in detail or step by step, thank you in advance.

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter3: Functions And Graphs
Section3.4: Definition Of Function
Problem 61E
icon
Related questions
Question
100%

" (Sum Rule): Suppose f: ℝⁿ → ℝᵐ and g: ℝⁿ → ℝᵐ are functions, and let a ∈ ℝⁿ and b, c ∈ ℝᵐ be points. If lim(x→a) f(x) = b and lim(x→a) g(x) = c, then lim(x→a) (f(x) + g(x)) = b + c.

Proof: Assume that lim(x→a) f(x) = b and lim(x→a) g(x) = c. Let ε > 0 be arbitrary. Then there exists δ₁ > 0 such that for x ∈ Dom(f) with d(x,a) < δ₁, we have ||f(x) - b|| < ε/2 (Equation 1.9). Similarly, there exists δ₂ > 0 such that for x ∈ Dom(g) with d(x,a) < δ₂, we have ||g(x) - c|| < ε/2 (Equation 1.10).

Take δ := min(δ₁, δ₂) and let x ∈ Dom(f + g) satisfy d(x,a) < δ. Since x ∈ Dom(f) and d(x,a) < δ₁, Equation 1.9 holds. Furthermore, x ∈ Dom(g) and d(x,a) < δ₂, so Equation 1.10 applies. We can combine these inequalities:

||f(x) + g(x) - (b + c)|| = ||(f(x) - b) + (g(x) - c)|| ≤ ||f(x) - b|| + ||g(x) - c|| < ε/2 + ε/2 = ε.

This shows that for all x ∈ Dom(f + g) with d(x,a) < δ, we have ||f(x) + g(x) - (b + c)|| < ε. Therefore, f(x) + g(x) → b + c as x → a."

I have this lemma in my analysis course, I am quite a bit confused, especially where "ε/2" comes from, if able please explain this lemma more in detail or step by step, thank you in advance.

Expert Solution
steps

Step by step

Solved in 3 steps with 16 images

Blurred answer
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
College Algebra
College Algebra
Algebra
ISBN:
9781938168383
Author:
Jay Abramson
Publisher:
OpenStax