
General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN: 9781305580343
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:Sufficient sodium cyanide, NaCN, was added to 2.5 × 10⁻² M silver nitrate, AgNO₃, to give a solution that was initially 0.202 M of a cyanide ion, CN⁻. What is the concentration of silver ion, Ag⁺, in this solution after Ag(CN)₂⁻ forms? The formation constant K_f for the complex ion Ag(CN)₂⁻ is 5.6 × 10¹⁸.
Concentration = _______ M
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The solubility of Mg(OH)2 in water is approximately 9.6 mg/L at a given temperature. Calculate the Ksp of magnesium hydroxide. Calculate the hydroxide concentration needed to precipitate Mg2+ ions such that no more than 5.0 μg Mg2+ per liter remains in the solution.arrow_forwardEach pair of ions below is found together in aqueous solution. Using the table of solubility product constants in Appendix J, devise a way to separate these ions by adding a reagent to precipitate one of the ions as an insoluble salt and leaving the other in solution. (a) Ba2+ and Na+ (b) Ni2+ and Pb2+arrow_forwardAn analytical chemist has a solution containing chloride ion, Cl. She decides to determine the amount of chloride ion in the solution by titrating 50.0 mL of this solution by 0.100 M AgNO3. As a way to indicate the endpoint of the titration, she added 1.00 g of potassium chromate, K2CrO4 (see Figure 17.5). As she slowly added the silver nitrate to the solution, a white precipitate formed. She continued the titration, with more white precipitate forming. Finally, the solution turned red, from another precipitate. The volume of the solution at this point was 60.3 mL. How many moles of chloride ion were there in the original solution? How many moles of chloride ion were there in the final solution? You may make any reasonable approximations.arrow_forward
- Mixtures of metal ions in aqueous solution can sometimes be separated by selective precipitation. What is selective precipitation? If a solution contained 0.10 M Mg2+, 0.10 M Ca2+, and 0. 10 M Ba2+, how could addition of NaF be used to separate the cations out of solutionthat is, what would precipitate first, then second, then third? How could addition of K3PO4 be used to separate out the cations in a solution that is 1.0 M Ag+, 1.0 M Pb2+, and 1.0 M Sr2+?arrow_forwardWhat is the Ksp expression for silver carbonate? (a) Ksp[Ag+][CO32] (b) Ksp[Ag+]2[CO32] (c) Ksp[Ag+][CO32]2arrow_forwardWhen 5 M ammonia is added to a solution containing Cu(OH)2(s), the precipitate will eventually dissolve in solution. Why? If 5 M HNO3 is then added, the Cu(OH)2 precipitate re-forms. Why? In general, what effect does the ability of a cation to form a complex ion have on the solubility of salts containing that cation?arrow_forward
- The Ksp value for radium sulfate, RaSO4, is 4.2 1011. If 25 mg of radium sulfate is placed in 1.00 102 mL of water, does all of it dissolve? If not, how much dissolves?arrow_forwardHow would the solubility of calcium fluoride be affected by the presence of fluoride ion from another source? What is the solubility of calcium fluoride in a saturated solution of barium fluoride? How does this compare with the value of the solubility of calcium fluoride found in Example 17.4? Is this what you expect?arrow_forwardA solution saturated with a salt of the type M3X2 has an osmotic pressure of 2.64 102 atm at 25C. Calculate the Ksp value for the salt, assuming ideal behavior.arrow_forward
- Sufficient sodium cyanide, NaCN, was added to 2.0 x 10-2 M silver nitrate, AgNO3, to give a solution that was initially 0.114 M of a cyanide ion, CN. What is the concentration of silver ion, Ag, in this solution after Ag(CN)2 forms? The formation constant K, for the complex ion Ag(CN)2 is 5.6 x 10¹8. Concentration = | Marrow_forwardSufficient sodium cyanide, NaCN, was added to 2.0 x 10-2 M silver nitrate, AgNO3, to give a solution that was initially 0.130 M of a cyanide ion, CN .What is the concentration of silver ion, Ag*, in this solution after Ag(CN)2 forms? The formation constant K¡ for the complex ion Ag(CN), is 5.6 x 10t8 Concentration Marrow_forwardSufficient sodium cyanide, NaCN, was added to 1.0 x 10-2 M silver nitrate, AGNO,, to give a solution that was initially 0.203 M of a cyanide ion, CN. What is the concentration of silver ion, Ag*, in this solution after Ag(CN)2 forms? The formation constant K; for the complex ion Ag(CN), is 5.6 x 1016 Concentration = Marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning