College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
A steel block of mass m is given a push so that it initially slides along a horizontal, steel track of mass M with speed v_0. The block and the track have the same specific heat c. After the initial push, the only forces acting on the block are its weight, a normal force from the track, and friction with the track (coefficient of kinetic friction μ_k). The block travels some distance before coming to rest. Both the block and the track are initially at a temperature T_0 and both end up at a temperature T_1 after the block has come to rest. You may assume that no heat leaves the block + track system and the the only source of heat to increase the temperatures is mechanical energy dissipated by friction. Which of the following changes to the given values would lead to the biggest increase in T_1, assuming all other parameters are left unchanged? (You may ignore any effects of thermal expansion.)
a. increase v_0 by 20%
b. increase μ_k by 50%
c. increase both m and M by 15%
d. increase c by 20%
e. decrease both m and M by 50%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An ideal spring is attached to the ceiling. While the spring is held at its relaxed length, a wooden block (M = 850 g) is attached to the bottom of the spring, and a ball of clay (m = 210 g) is pressed onto the bottom of the block so that they stick together. The block+clay are gently lowered through a distance of d = 2.7 cm and are then released, at which point they hang motionlessly from the bottom of the spring. After a few minutes have passed, the clay unsticks itself from the block and falls from rest to the ground. 1. What is the resulting period T of the block’s oscillation after the separation occurs? 2. As d approaches 0, what limit does T approach?arrow_forwardA crate of mass m1 slides down a well-lubricated hill of height h, with negligible friction. At the bottom, where it is moving horizontally, it collides with another crate, of mass m2, that initially was sitting at rest and that is attached to a wall by a spring of spring constant k that initially is at its equilibrium length. Assume that the spring itself has negligible mass. a)Given that the distance d that the crates compress the spring is d=0.35 m, calculate the speed v2 of the crates immediately after the collision, in units of meters per second. Use the following values:k=950 N/mm1=2.4 kgm2=2.6 kgμ=0.49g=9.8 m/s2 b) What was the speed of the crate of mass m1 just before the collision with the second block, in meters per second? c)What is the height h of the hill, in meters?arrow_forwardYou wake up one morning to find yourself in a strange room with opaque walls, and no visible doors or windows. You decide to do some experiments to find out more about your strange situation. Your own body mass is 50.1 kg. You pick up an object and drop it from rest, starting at a height of 1.97 meters above the floor, and it hits the floor 0.380 seconds later. You can ignore air resistance. Based on the outcome of this experiment, when you step on the scale provided for you, what weight will it register for your body? 684 N 911 N 1,367 N 491.5 Narrow_forward
- m A shown in the picture, a 238 g mass slides down a curved incline then collides with a spring. The spring constant of the spring is 106 N/m. Assume that friction is negligble in these problems. (A) If the mass starts from rest at a height of 1.97 cm, what is the final compression of the spring when the mass comes to rest? Assume the spring is initially uncompressed. 2.95 cm (B) If the mass initially compresses the spring 1.14 cm, what is the maximum height the mass rises to on the incline? Assume the mass is released from rest. (C) If the mass is released from rest at a height of 1.97 cm, what is the compression of the spring when the mass has a speed of 45.4 cm/s?arrow_forwardPlease answer the question correctlyarrow_forwardA block of mass 12 kg slides down a frictionless inclined plane inclined at 35° with no initial velocity and is stopped by a spring of k= 3.0 * 10^4 N/m. The block slides a total distance of d = 3 m from the point where it was released to the point where it stops due to the resistance of the spring. How much is the spring compressed when the block stops?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON