College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Starting from the Lorentz transformation, derive time dilation ?t = ? ?t0. Sketch the situation, defining all of the variables.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- a) Find the value of y for the following situation. An astronaut measures the length of his spaceship to be 100 m, while an earthbound observer measures it to be 25 m. b) What is the speed of the spaceship relative to Earth?arrow_forwardPlease answer D A spaceship from another galaxy passes over the solar system directly above a radial line from the sun to the Earth. (We measure the distance between the Earth and the Sun to be 1.496 x 1011 m.) An observer standing on the Earth measures that the spaceship is approaching at 0.800c. The Earth-based observer also measures that it takes the spaceship 625 seconds to travel from the sun to Earth. Ignore the relative motion of the Sun and Earth in this problem – their relative speed is only 0.001c, negligibly small compared to 0.800c. a) According to a scientist in the spaceship, the Earth-Sun distance is: 8.976 x 1010m b) According to a scientist in the spaceship, the time it takes her to travel the Earth-Sun distance is: 357s c) What is the ratio of the kinetic energy to rest energy of the spaceship? KE/ER = 0.667 d) As the spaceship passed over the Sun, the alien scientist launched a probe toward Earth, traveling at 0.200c relative to the spaceship. What would the…arrow_forwardThe proper length of one spaceship is three times that of another. The two spaceships are traveling in the same direction and, while both are passing overhead, an Earth observer measures the two spaceships to have the same length. If the slower spaceship has a speed of 0.354c with respect to Earth, determine the speed of the faster spaceship. (Give your answer to at least 3 significant figures.) |carrow_forward
- The space and time coordinates for two events as measured in a frame S are as follows: Event 1: x1=x0 , t1=x0/c Event 2: x2=2x0, t2=x0/2c a. There exists a frame in which these events occur at the same time. Find the velocity of this frame with respect to S. b. What is the value of t at which both events occur in the new frame?arrow_forwardDetermine an expression for the total travel time of the light pulse, as measured by the following: A) an observer in the S frame (Use the following as necessary: c, d, and v.) B) an observer on the spacecraft (Use the following as necessary: c, d, and v.) What If? If the transmitted light beam has a wavelength λT, determine an expression for the shift in the wavelength of the light beam, as measured by the following C) an observer in the S frame (Use the following as necessary: c, v, and λT.) D) an observer on the spacecraft (Use the following as necessary: c, v, and λT.)arrow_forwardConsider the equation for kinetic energy: KE = 1/2mv^2 = 1/2 * m * v^2. If I ask you to take the derivative of kinetic energy, you should ask "the derivative with respect to what?" a) Suppose mass m is constant. Compute the derivative of KE with respect to v, (d(KE)/dv). b) Who takes derivatives with respect to velocity? No one. Except you, just now. Sorry. The rate of change of energy with respect to time is more important: it is the Power. Now, consider velocity v to be a function of time, v(t). We will rewrite KE showing this time dependance: KE= 1/2 * m * v(t)^2. Show that (d(KE)/dt) = F(t)v(t). Hint: use Newton's second law, F = ma, to simplify. c) In the computation above, we assumed m was constant, and v was changing in time. Think of a physical situation in which both m and v are varying in time. d) Compute the Power when both mass and velocity are changing in time. (First rewrite KE(t) showing time dependence, then compute (d(KE)/dt).arrow_forward
- Consider a general equation for the ratio the relativistic length to the proper length. Find an algebraic expression for v/c in terms of, ΔL/ΔLo Show the algebraic form of the equation that you apply and the final final expression.arrow_forwardIn the Marvel comics universe, Quicksilver is awfully fast. Let's say he can run at a velocity of 0.56c. He measures a trip as having a distance of 4.60e+05 m. How much time does Quicksilver measure this trip as taking? 2.73e-3 S Does Quicksilver measure the proper or dilated time? 2 proper time v Quicksilver's sister, Wanda Maximoff, is standing stationary near where he is running. How much time does Wanda measure this trip as taking? 3 3.29e-3 S What distance does Wanda measure for Quicksilver's trip? 4 Xmarrow_forwardPlease derive the attatched velocity transformations by using the Lorentz transformation for the velocity four vector (uμ). (hint: two of the Lorentz transformation equations are needed to solve this)arrow_forward
- In frame o an object moves in the x-direction with velocity u = 0.82c. Find the magnitude of the x-component of the velocity in frame o' which moves at velocity v =-.75c in the x-direction relative to frame o. Give your answer in units of c (e.g. 0.703 if the answer is 0.703c). Round your answer to 3 decimal places. Add your answerarrow_forwardPlease specify the reference frames and draw diagrams to illustrate the problem. show complete solution tooarrow_forwardAt t=0, an alien spaceship passes by the earth: let this be event A. At t=13 min (according to synchronized clocks on earth and Mars), the spaceship passes by Mars, which is 5 light-minutes from earth at the time: let this be event B. Radar tracking indicates that the spaceship moves at a constant velocity between earth and Mars. Just after the ship passes earth, people on earth launch a probe whose purpose is to catch up with and investigate the spaceship. This probe accelerates away from earth, moving slowly at first, but moving faster and faster as time passes, eventually catching up with and passing the alien ship just as it passes Mars. In all parts of this problem, you can ignore the effects of gravity and the relative motion of earth and Mars (which are small) and treat earth and Mars as if they were both at rest in the inertial reference frame of the solar system. Also assume that both the probe and the alien spacecraft carry clocks. 1. Draw a quantitatively accurate…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON