Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 6.2 m/s. Ignore frictional losses. (a) What is the height of the hill? (b) Released from rest at the same height, a can of frozen juice rolls to the bottom of the same hill. What is the translational speed of the frozen juice can when it reaches the bottom?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Similar questions
- A digital audio compact disc carries data, each bit of which occupies 0.6 m along a continuous spiral track from the inner circumference of the disc to the outside edge. A CD player turns the disc to carry the track counterclockwise above a lens at a constant speed of 1.30 m/s. Find the required angular speed (a) at the beginning of the recording, where the spiral has a radius of 2.30 cm, and (b) at the end of the recording, where the spiral has a radius of 5.80 cm. (c) A full-length recording lasts for 74 min 33 s. Find the average angular acceleration of the disc. (d) Assuming that the acceleration is constant, find the total angular displacement of the disc as it plays. (e) Find the total length of the track.arrow_forwardAn ultracentrifuge accelerates from to 100,000 rpm in 2.00 min. (a) What is the average angular acceleration in rad/s2 ? (b) What is the tangential acceleration of a point 9.50 cm from the axis of rotation? (c) What is the centripetal acceleration in m/s2 and multiples of g of this point at full rpm? (d) What is the total distance travelled by a point 9.5 cm from the axis of totation of the ultracentrifuge?arrow_forwardConsider an object on a rotating disk a distance r from its center, held in place on the disk by static friction. Which of the following statements is not true concerning this object? (a) If the angular speed is constant, the object must have constant tangential speed. (b) If the angular speed is constant, the object is not accelerated. (c) The object has a tangential acceleration only if the disk has an angular acceleration. (d) If the disk has an angular acceleration, the object has both a centripetal acceleration and a tangential acceleration. (e) The object always has a centripetal acceleration except when the angular speed is zero.arrow_forward
- Problems 62 and 63 are paired. 62. C A disk is rotating around a fixed axis that passes through its center and is perpendicular to the face of the disk. Consider a point on the rim of the disk (point R) and another point halfway between the center and the rim (point H) at one particular instant. a. How does the angular speed v of the disk at point H compare with the angular speed of the disk at point R? b. How does the tangential speed of the disk at point H compare with the tangential speed of the disk at point R? c. Suppose we pick a point H on the disk at random (by throwing a dart, for example), and we compare the speeds at that point with the speeds at point R. How will the answers to parts (a) and (b) be different? Explain.arrow_forwardWhat is (a) the angular speed and (b) the linear speed of a point on Earth’s surface at latitude 30N . Take the radius of the Earth to be 6309 km. (c) At what latitude would your linear speed be 10 m/s?arrow_forwardA disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.arrow_forward
- A turntable (disk) of radius r = 26.0 cm and rotational inertia0.400 kg m2 rotates with an angular speed of 3.00 rad/s arounda frictionless, vertical axle. A wad of clay of mass m =0.250 kg drops onto and sticks to the edge of the turntable.What is the new angular speed of the turntable?arrow_forwardThe tub of a washer goes into its spin cycle, starting from rest and gaining angular speed steadily for 8.00 s, at which time it is turning at 5.00 rev/s. At this point, the person doing the laundry opens the lid, and a safety switch turns off the washer. The tub smoothly slows to rest in 12.0 s. Through how many revolutions does the tub turn while it is in motion?arrow_forwardOne method of pitching a softball is called the wind-mill delivery method, in which the pitchers arm rotates through approximately 360 in a vertical plane before the 198-gram ball is released at the lowest point of the circular motion. An experienced pitcher can throw a ball with a speed of 98.0 mi/h. Assume the angular acceleration is uniform throughout the pitching motion and take the distance between the softball and the shoulder joint to be 74.2 cm. (a) Determine the angular speed of the arm in rev/s at the instant of release, (b) Find the value of the angular acceleration in rev/s2 and the radial and tangential acceleration of the ball just before it is released, (c) Determine the force exerted on the ball by the pitchers hand (both radial and tangential components) just before it is released.arrow_forward
- Lara is running just outside the circumference of a carousel, looking for her favorite horse to ride, with a constant angular speed of 1.00 rad/s. Just as she spots the horse, one-fourth of the circumference ahead of her, the carousel begins to move, accelerating from rest at 0.050 rad/s2. a. Taking the time when the carousel begins to move as t = 0, when will Lara catch up to the horse? b. Lara mistakenly passes the horse and keeps running at constant angular speed. If the carousel continues to accelerate at the same rate, when will the horse draw even with Lara again?arrow_forwardWhich rolls down an inclined plane faster, a hollow cylinder or a solid sphere? Both have the same mass and radius.arrow_forwardA track star runs a 400-m race on a 400-m circular track in 45 s. What is his angular velocity assuming a constant speed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill