A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
10th Edition
ISBN: 9780134753119
Author: Sheldon Ross
Publisher: PEARSON
Bartleby Related Questions Icon

Related questions

Question
Standard Normal Curve Areas (page 1)
The column under A gives the proportion
of the area under the entire curve that is
between z= 0 and a positive value of z.
A
z
A
z
A
0.60 0.226
0.122 0.61 0.229
z
0.00 0.000 0.30 0.118
0.01 0.004 0.31
0.02 0.008 0.32 0.126 0.62 0.232 0.92
0.03 0.012 0.33 0.129 0.63 0.236 0.93
0.04 0.016 0.34 0.133 0.64 0.239
0.05 0.020 0.35 0.137 0.65
0.06 0.024 0.36 0.141 0.66
0.07 0.028 0.37 0.144 0.67
0.08 0.032 0.38 0.148 0.68
0.94
0.242
0.95
0.245
0.96
0.249 0.97
0.09 0.036 0.39 0.152 0.69
0.10 0.040 0.40 0.155 0.70 0.258
0.11 0.044 0.41 0.159 0.71 0.261
0.12 0.048 0.42 0.163 0.72 0.264
0.13 0.052 0.43 0.166 0.73 0.267
0.270
0.14 0.056 0.44
0.060
0.15
0.45
0.273
0.16 0.064
0.067
0.071
0.075
0.17
0.18
0.19
0.26 0.103
0.27
0.48
0.49
0.20 0.079 0.50
0.21
0.083
0.52
0.087
0.22
0.23 0.091 0.53
0.24
0.25 0.099
0.095 0.54
0.55
1.94
1.95
1.96
1.97
1.98
1.99
2.00
0.46
0.47
0.198
0.202
0.205
0.209
0.56 0.212
0.106 0.57
0.216
0.110 0.58 0.219
0.222
0.59
2.05
2.06
0.170
0.174
Areas under the Normal Curve
s
0
z
z
0.475
0.476
0.476
0.477
0.477
0.478
0.177
0.181
0.184
0.188
0.191
0.51 0.195 0.81
The column under A gives the proportion
of the area under the entire curve that is
between z= 0 and a positive value of z.
2.01
2.02
2.03
2.04 0.479
0.480
0.480 2.36
2.37
2.38
2.39
0.478
0.479
0.74
0.75
2.07
0.481
2.08 0.481
2.00 0.482
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.76
0.276
1.06
0.77
0.279 1.07
0.78
0.282
0.79 0.285
0.80 0.288
0.291
0.28
0.29 0.114
Standard Normal Curve Areas (page 2)
0.252 0.98
0.255 0.99
1.00
1.01
0.294
0.297
0.90
0.91
2.61
2.62
2.63
0.490
0.490
2.33
2.64
2.34 0.490
0.491
2.35
2.65
0.491
2.66
0.491 2.67
0.491
2.68
0.492
2.69
1.02
1.03
1.08
1.09
0.496
0.496
0.496
1.10
1.11
0.300
0.302
0.305
0.308
1.17
0.311 1.18
0.313 1.19
0.496
0.496
1.12
1.13
1.14
1.15
1.16
A
0.316
0.319
0.321
0.324
0.341 1.30
0.403 1.60
0.344 1.31 0.405 1.61
0.346 1.32
0.348 1.33
1.04
0.351
1.05 0.353
Areas under the Normal Curve
0
Z
z
A
Z
A
Z
Z
2.73 0.497
A
A
1.80 0.464 2.10 0.482
2.40 0.492 2.70 0.497 3.00
1.81 0.465 2.11 0.483 2.41 0.492 2.71 0.497 3.01
1.82 0.466 2.12 0.483 2.42 0.492
2.72 0.497
1.83 0.466 2.13 0.483
2.43
0.492
1.84 0.467 2.14 0.484 2.44 0.493 2.74 0.497
1.85 0.468 2.15 0.484 2.45 0.493 2.75 0.497
1.86 0.469 2.16 0.485 2.46 0.493 2.76 0.497 3.06
1.87 0.469 2.17 0.485 2.47 0.493 2.77 0.497 3.07
0.485 2.48 0.493
1.89 0.471 2.19 0.486 2.49 0.494
1.88 0.470 2.18
1.90 0.471 2.20
1.91
1.92
2.22
0.473
1.93 0.473 2.23
0.474
0.474
0.355
0.358
Because the curve is symmetric
about 0, the area between z=0
and a negative value of z can be
found by using the corresponding
positive value of z.
2
0.496
0.496
0.496 2.99
z
1.20
1.21
1.22
1.23
0.326
0.329
0.331 1.26 0.396 1.56
0.334 1.27
0.398
1.57
0.336 1.28
0.400 1.58
0.339 1.29
0.401 1.59
0.389
1.52
0.391 1.53
1.24
0.393
1.25 0.394
1.66
1.67
1.68
1.69
0.364
1.70
0.367
0.421 1.71
0.369
0.422 1.72
0.371
0.424
1.73
0.373 1.44 0.425
1.74
0.375
1.45
0.426
0.377 1.46
0.428
0.379
0.429 1.77
0.381
0.431
1.78
0.383
0.432 1.79
1.36
1.37
2.80
0.486 2.50 0.494
0.472 2.21 0.486
2.51 0.494 2.81
0.487 2.52 0.494 2.82 0.498 3.12 0.499
0.487 2.53 0.494 2.83 0.498
2.84 0.498
0.495 2.85 0.498
0.487
2.24
3.13 0.499
3.14 0.499
3.15 0.499
2.54 0.494
2.55
2.56
2.25 0.488
2.26
0.488
0.495 2.86
0.498
2.27
0.488
2.57
0.495
2.87
0.498
2.28
0.489
2.58
0.495
2.88
0.498
2.29
0.489
2.59
0.495 2.89
0.498
2.30
0.489
2.60
0.495 2.90
2.31
0.490
0.495
2.91
2.32
2.92
2.93
2.94
2.95
2.97 0.499
2.98 0.499
0.499
A
z
0.385 1.50
0.387 1.51
0.360 1.38
0.362
1.39
0.419
1.40
1.41
1.42
1.43
1.47
1.48
1.49
0.407 1.62 0.447
0.408 1.63
1.34 0.410 1.64
1.35 0.411
1.65
0.413
0.415
3.16
3.17
0.416
0.418
0.498
0.498
3.22
0.498
3.23
0.498
3.24
0.498 3.25
3.26
3.27
3.28
3.29
0.498
2.96
1.54
1.55
3.20
0.498
3.21
Because the curve is symmetric
about 0, the area between z=0
and a negative value of z can be
found by using the corresponding
positive value of z.
Z
A
0.499 3.30
0.499 3.31
3.32
3.33
1.75
1.76
3.02 0.499
3.03 0.499
3.04 0.499 3.34 0.500
3.05 0.499 3.35
0.500
0.500
0.500
0.499 3.36
0.499 3.37
2.78 0.497 3.08 0.499
3.38
0.500
3.09 0.499 3.39 0.500
2.79
0.497
0.497 3.10 0.499 3.40 0.500
0.498 3.11 0.499 3.41
0.500
3.42
0.500
3.43
0.500
3.44
0.500
3.45
0.500
0.499 3.46
0.500
0.499 3.47
0.500
3.18
0.499
3.48
3.19 0.499 3.49
0.499
3.50
0.499
3.51
0.499
3.52
0.499
A
0.433
0.434
0.436
0.437
0.438
0.439
0.441
0.442
0.443
0.444
0.499
0.499
0.499
0.445
0.446
0.499 3.54
0.448
0.449
0.451
0.452
0.453
0.454
0.454
0.455
0.456
0.457
0.458
0.459
0.460
0.461
0.462
0.462
0.463
A
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
3.53 0.500
0.500
0.500
0.500
3.55
0.499
0.499
3.56
3.57
3.58
3.59
0.500
0.500
0.500
expand button
Transcribed Image Text:Standard Normal Curve Areas (page 1) The column under A gives the proportion of the area under the entire curve that is between z= 0 and a positive value of z. A z A z A 0.60 0.226 0.122 0.61 0.229 z 0.00 0.000 0.30 0.118 0.01 0.004 0.31 0.02 0.008 0.32 0.126 0.62 0.232 0.92 0.03 0.012 0.33 0.129 0.63 0.236 0.93 0.04 0.016 0.34 0.133 0.64 0.239 0.05 0.020 0.35 0.137 0.65 0.06 0.024 0.36 0.141 0.66 0.07 0.028 0.37 0.144 0.67 0.08 0.032 0.38 0.148 0.68 0.94 0.242 0.95 0.245 0.96 0.249 0.97 0.09 0.036 0.39 0.152 0.69 0.10 0.040 0.40 0.155 0.70 0.258 0.11 0.044 0.41 0.159 0.71 0.261 0.12 0.048 0.42 0.163 0.72 0.264 0.13 0.052 0.43 0.166 0.73 0.267 0.270 0.14 0.056 0.44 0.060 0.15 0.45 0.273 0.16 0.064 0.067 0.071 0.075 0.17 0.18 0.19 0.26 0.103 0.27 0.48 0.49 0.20 0.079 0.50 0.21 0.083 0.52 0.087 0.22 0.23 0.091 0.53 0.24 0.25 0.099 0.095 0.54 0.55 1.94 1.95 1.96 1.97 1.98 1.99 2.00 0.46 0.47 0.198 0.202 0.205 0.209 0.56 0.212 0.106 0.57 0.216 0.110 0.58 0.219 0.222 0.59 2.05 2.06 0.170 0.174 Areas under the Normal Curve s 0 z z 0.475 0.476 0.476 0.477 0.477 0.478 0.177 0.181 0.184 0.188 0.191 0.51 0.195 0.81 The column under A gives the proportion of the area under the entire curve that is between z= 0 and a positive value of z. 2.01 2.02 2.03 2.04 0.479 0.480 0.480 2.36 2.37 2.38 2.39 0.478 0.479 0.74 0.75 2.07 0.481 2.08 0.481 2.00 0.482 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.76 0.276 1.06 0.77 0.279 1.07 0.78 0.282 0.79 0.285 0.80 0.288 0.291 0.28 0.29 0.114 Standard Normal Curve Areas (page 2) 0.252 0.98 0.255 0.99 1.00 1.01 0.294 0.297 0.90 0.91 2.61 2.62 2.63 0.490 0.490 2.33 2.64 2.34 0.490 0.491 2.35 2.65 0.491 2.66 0.491 2.67 0.491 2.68 0.492 2.69 1.02 1.03 1.08 1.09 0.496 0.496 0.496 1.10 1.11 0.300 0.302 0.305 0.308 1.17 0.311 1.18 0.313 1.19 0.496 0.496 1.12 1.13 1.14 1.15 1.16 A 0.316 0.319 0.321 0.324 0.341 1.30 0.403 1.60 0.344 1.31 0.405 1.61 0.346 1.32 0.348 1.33 1.04 0.351 1.05 0.353 Areas under the Normal Curve 0 Z z A Z A Z Z 2.73 0.497 A A 1.80 0.464 2.10 0.482 2.40 0.492 2.70 0.497 3.00 1.81 0.465 2.11 0.483 2.41 0.492 2.71 0.497 3.01 1.82 0.466 2.12 0.483 2.42 0.492 2.72 0.497 1.83 0.466 2.13 0.483 2.43 0.492 1.84 0.467 2.14 0.484 2.44 0.493 2.74 0.497 1.85 0.468 2.15 0.484 2.45 0.493 2.75 0.497 1.86 0.469 2.16 0.485 2.46 0.493 2.76 0.497 3.06 1.87 0.469 2.17 0.485 2.47 0.493 2.77 0.497 3.07 0.485 2.48 0.493 1.89 0.471 2.19 0.486 2.49 0.494 1.88 0.470 2.18 1.90 0.471 2.20 1.91 1.92 2.22 0.473 1.93 0.473 2.23 0.474 0.474 0.355 0.358 Because the curve is symmetric about 0, the area between z=0 and a negative value of z can be found by using the corresponding positive value of z. 2 0.496 0.496 0.496 2.99 z 1.20 1.21 1.22 1.23 0.326 0.329 0.331 1.26 0.396 1.56 0.334 1.27 0.398 1.57 0.336 1.28 0.400 1.58 0.339 1.29 0.401 1.59 0.389 1.52 0.391 1.53 1.24 0.393 1.25 0.394 1.66 1.67 1.68 1.69 0.364 1.70 0.367 0.421 1.71 0.369 0.422 1.72 0.371 0.424 1.73 0.373 1.44 0.425 1.74 0.375 1.45 0.426 0.377 1.46 0.428 0.379 0.429 1.77 0.381 0.431 1.78 0.383 0.432 1.79 1.36 1.37 2.80 0.486 2.50 0.494 0.472 2.21 0.486 2.51 0.494 2.81 0.487 2.52 0.494 2.82 0.498 3.12 0.499 0.487 2.53 0.494 2.83 0.498 2.84 0.498 0.495 2.85 0.498 0.487 2.24 3.13 0.499 3.14 0.499 3.15 0.499 2.54 0.494 2.55 2.56 2.25 0.488 2.26 0.488 0.495 2.86 0.498 2.27 0.488 2.57 0.495 2.87 0.498 2.28 0.489 2.58 0.495 2.88 0.498 2.29 0.489 2.59 0.495 2.89 0.498 2.30 0.489 2.60 0.495 2.90 2.31 0.490 0.495 2.91 2.32 2.92 2.93 2.94 2.95 2.97 0.499 2.98 0.499 0.499 A z 0.385 1.50 0.387 1.51 0.360 1.38 0.362 1.39 0.419 1.40 1.41 1.42 1.43 1.47 1.48 1.49 0.407 1.62 0.447 0.408 1.63 1.34 0.410 1.64 1.35 0.411 1.65 0.413 0.415 3.16 3.17 0.416 0.418 0.498 0.498 3.22 0.498 3.23 0.498 3.24 0.498 3.25 3.26 3.27 3.28 3.29 0.498 2.96 1.54 1.55 3.20 0.498 3.21 Because the curve is symmetric about 0, the area between z=0 and a negative value of z can be found by using the corresponding positive value of z. Z A 0.499 3.30 0.499 3.31 3.32 3.33 1.75 1.76 3.02 0.499 3.03 0.499 3.04 0.499 3.34 0.500 3.05 0.499 3.35 0.500 0.500 0.500 0.499 3.36 0.499 3.37 2.78 0.497 3.08 0.499 3.38 0.500 3.09 0.499 3.39 0.500 2.79 0.497 0.497 3.10 0.499 3.40 0.500 0.498 3.11 0.499 3.41 0.500 3.42 0.500 3.43 0.500 3.44 0.500 3.45 0.500 0.499 3.46 0.500 0.499 3.47 0.500 3.18 0.499 3.48 3.19 0.499 3.49 0.499 3.50 0.499 3.51 0.499 3.52 0.499 A 0.433 0.434 0.436 0.437 0.438 0.439 0.441 0.442 0.443 0.444 0.499 0.499 0.499 0.445 0.446 0.499 3.54 0.448 0.449 0.451 0.452 0.453 0.454 0.454 0.455 0.456 0.457 0.458 0.459 0.460 0.461 0.462 0.462 0.463 A 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 3.53 0.500 0.500 0.500 0.500 3.55 0.499 0.499 3.56 3.57 3.58 3.59 0.500 0.500 0.500
In nutrition, the recommended daily allowance of vitamins is a number set by the government to guide an individual's daily vitamin intake. Actually, vitamin needs vary drastically from person
to person, but the needs are closely approximated by a normal curve. To calculate the recommended daily allowance, the government first finds the standard deviation and the average need for
vitamins among people in the population. The recommended daily allowance is then defined as the mean plus 2.4 times the standard deviation. What fraction of the population will receive adequate
amounts of vitamins under this plan?
Click here to see page 1 of the table for areas under the standard normal curve.
Click here to see page 2 of the table for areas under the standard normal curve
CID
The fraction of the population that will receive adequate amounts of vitamins under the given plan is
(Type an integer or decimal rounded to the nearest thousandth as needed.).
expand button
Transcribed Image Text:In nutrition, the recommended daily allowance of vitamins is a number set by the government to guide an individual's daily vitamin intake. Actually, vitamin needs vary drastically from person to person, but the needs are closely approximated by a normal curve. To calculate the recommended daily allowance, the government first finds the standard deviation and the average need for vitamins among people in the population. The recommended daily allowance is then defined as the mean plus 2.4 times the standard deviation. What fraction of the population will receive adequate amounts of vitamins under this plan? Click here to see page 1 of the table for areas under the standard normal curve. Click here to see page 2 of the table for areas under the standard normal curve CID The fraction of the population that will receive adequate amounts of vitamins under the given plan is (Type an integer or decimal rounded to the nearest thousandth as needed.).
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
A First Course in Probability (10th Edition)
Probability
ISBN:9780134753119
Author:Sheldon Ross
Publisher:PEARSON
Text book image
A First Course in Probability
Probability
ISBN:9780321794772
Author:Sheldon Ross
Publisher:PEARSON