Solve the problem. Find the general solution of the homogeneous system below. Give your answer as a vector. X₁ + 2x2-3x3 = 0 4x1 + 7x2-9x3=0 -X1-4x2 + 9x3=0 3-0 x2x3 3 x3 4411 x1 841 x3 2-3 x2 = X3 O

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
---

**Solve the problem.**

Find the general solution of the homogeneous system below. Give your answer as a vector.

\[
\begin{aligned}
x_1 + 2x_2 - 3x_3 &= 0 \\
4x_1 + 7x_2 - 9x_3 &= 0 \\
-x_1 - 4x_2 + 9x_3 &= 0 
\end{aligned}
\]

\[
\begin{aligned}
\circ \begin{bmatrix}
x_1 \\
x_2 \\
x_3 
\end{bmatrix} = 
\begin{bmatrix}
-3 \\
3 \\
1 
\end{bmatrix}
\end{aligned}
\]

\[
\begin{aligned}
\circ \begin{bmatrix}
x_1 \\
x_2 \\
x_3 
\end{bmatrix} = 
\begin{bmatrix}
-3 \\
3 \\
0 
\end{bmatrix}
\end{aligned}
\]

\[
\begin{aligned}
\circ \begin{bmatrix}
x_1 \\
x_2 \\
x_3 
\end{bmatrix} = 
\begin{bmatrix}
3 \\
-3 \\
1 
\end{bmatrix}
\end{aligned}
\]

\[
\begin{aligned}
\circ \begin{bmatrix}
x_1 \\
x_2 \\
x_3 
\end{bmatrix} = 
x_3 \begin{bmatrix}
-3 \\
3 \\
1
\end{bmatrix}
\end{aligned}
\]

---

This problem asks for the general solution of a given homogeneous system of linear equations and to express the result as a vector. There are four multiple-choice options provided, each offering a different possible solution vector. The correct answer should satisfy all three linear equations simultaneously.
Transcribed Image Text:--- **Solve the problem.** Find the general solution of the homogeneous system below. Give your answer as a vector. \[ \begin{aligned} x_1 + 2x_2 - 3x_3 &= 0 \\ 4x_1 + 7x_2 - 9x_3 &= 0 \\ -x_1 - 4x_2 + 9x_3 &= 0 \end{aligned} \] \[ \begin{aligned} \circ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 3 \\ 1 \end{bmatrix} \end{aligned} \] \[ \begin{aligned} \circ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 3 \\ 0 \end{bmatrix} \end{aligned} \] \[ \begin{aligned} \circ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \\ 1 \end{bmatrix} \end{aligned} \] \[ \begin{aligned} \circ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -3 \\ 3 \\ 1 \end{bmatrix} \end{aligned} \] --- This problem asks for the general solution of a given homogeneous system of linear equations and to express the result as a vector. There are four multiple-choice options provided, each offering a different possible solution vector. The correct answer should satisfy all three linear equations simultaneously.
### Solving Systems of Linear Equations – Parametric Vector Form

#### Given Problem:
Describe all solutions of \( Ax = b \), where
\[ A = \begin{bmatrix} 
2 & -5 & 3 \\
-2 & 6 & -5 \\
-4 & 7 & 0 
\end{bmatrix} \]
and
\[ b = \begin{bmatrix} 
-3 \\
4 \\
3 
\end{bmatrix} \]

#### Task:
Describe the general solution in parametric vector form.

#### Solution Options:

1. Option 1:
\[ \begin{bmatrix} 
x_1 \\ 
x_2 \\ 
x_3 
\end{bmatrix} = 
\begin{bmatrix} 
1 \\ 
1 \\ 
0 
\end{bmatrix} 
+ x_3 
\begin{bmatrix} 
7/2 \\ 
2 \\ 
0 
\end{bmatrix} \]

2. Option 2:
\[ \begin{bmatrix} 
x_1 \\ 
x_2 \\ 
x_3 
\end{bmatrix} = 
\begin{bmatrix} 
7/2 \\ 
2 \\ 
1 
\end{bmatrix} 
+ x_3 
\begin{bmatrix} 
1 \\ 
1 \\ 
0 
\end{bmatrix} \]

3. Option 3:
\[ \begin{bmatrix} 
x_1 \\ 
x_2 \\ 
x_3 
\end{bmatrix} = 
\begin{bmatrix} 
1 \\ 
1 \\ 
0 
\end{bmatrix} 
+ x_3 
\begin{bmatrix} 
7/2 \\ 
2 \\ 
1 
\end{bmatrix} \]

4. Option 4:
\[ \begin{bmatrix} 
x_1 \\ 
x_2 \\ 
x_3 
\end{bmatrix} = 
\begin{bmatrix} 
-3 \\ 
1 \\ 
0 
\end{bmatrix} 
+ x_3 
\begin{bmatrix} 
-1/2 \\ 
2 \\ 
1 
\end{bmatrix} \]

Choose the correct option that represents the general solution in parametric vector form.
Transcribed Image Text:### Solving Systems of Linear Equations – Parametric Vector Form #### Given Problem: Describe all solutions of \( Ax = b \), where \[ A = \begin{bmatrix} 2 & -5 & 3 \\ -2 & 6 & -5 \\ -4 & 7 & 0 \end{bmatrix} \] and \[ b = \begin{bmatrix} -3 \\ 4 \\ 3 \end{bmatrix} \] #### Task: Describe the general solution in parametric vector form. #### Solution Options: 1. Option 1: \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 7/2 \\ 2 \\ 0 \end{bmatrix} \] 2. Option 2: \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7/2 \\ 2 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \] 3. Option 3: \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 7/2 \\ 2 \\ 1 \end{bmatrix} \] 4. Option 4: \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1/2 \\ 2 \\ 1 \end{bmatrix} \] Choose the correct option that represents the general solution in parametric vector form.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,