Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question
---

**Solve the problem.**

Find the general solution of the homogeneous system below. Give your answer as a vector.

\[
\begin{aligned}
x_1 + 2x_2 - 3x_3 &= 0 \\
4x_1 + 7x_2 - 9x_3 &= 0 \\
-x_1 - 4x_2 + 9x_3 &= 0 
\end{aligned}
\]

\[
\begin{aligned}
\circ \begin{bmatrix}
x_1 \\
x_2 \\
x_3 
\end{bmatrix} = 
\begin{bmatrix}
-3 \\
3 \\
1 
\end{bmatrix}
\end{aligned}
\]

\[
\begin{aligned}
\circ \begin{bmatrix}
x_1 \\
x_2 \\
x_3 
\end{bmatrix} = 
\begin{bmatrix}
-3 \\
3 \\
0 
\end{bmatrix}
\end{aligned}
\]

\[
\begin{aligned}
\circ \begin{bmatrix}
x_1 \\
x_2 \\
x_3 
\end{bmatrix} = 
\begin{bmatrix}
3 \\
-3 \\
1 
\end{bmatrix}
\end{aligned}
\]

\[
\begin{aligned}
\circ \begin{bmatrix}
x_1 \\
x_2 \\
x_3 
\end{bmatrix} = 
x_3 \begin{bmatrix}
-3 \\
3 \\
1
\end{bmatrix}
\end{aligned}
\]

---

This problem asks for the general solution of a given homogeneous system of linear equations and to express the result as a vector. There are four multiple-choice options provided, each offering a different possible solution vector. The correct answer should satisfy all three linear equations simultaneously.
expand button
Transcribed Image Text:--- **Solve the problem.** Find the general solution of the homogeneous system below. Give your answer as a vector. \[ \begin{aligned} x_1 + 2x_2 - 3x_3 &= 0 \\ 4x_1 + 7x_2 - 9x_3 &= 0 \\ -x_1 - 4x_2 + 9x_3 &= 0 \end{aligned} \] \[ \begin{aligned} \circ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 3 \\ 1 \end{bmatrix} \end{aligned} \] \[ \begin{aligned} \circ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 3 \\ 0 \end{bmatrix} \end{aligned} \] \[ \begin{aligned} \circ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \\ 1 \end{bmatrix} \end{aligned} \] \[ \begin{aligned} \circ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -3 \\ 3 \\ 1 \end{bmatrix} \end{aligned} \] --- This problem asks for the general solution of a given homogeneous system of linear equations and to express the result as a vector. There are four multiple-choice options provided, each offering a different possible solution vector. The correct answer should satisfy all three linear equations simultaneously.
### Solving Systems of Linear Equations – Parametric Vector Form

#### Given Problem:
Describe all solutions of \( Ax = b \), where
\[ A = \begin{bmatrix} 
2 & -5 & 3 \\
-2 & 6 & -5 \\
-4 & 7 & 0 
\end{bmatrix} \]
and
\[ b = \begin{bmatrix} 
-3 \\
4 \\
3 
\end{bmatrix} \]

#### Task:
Describe the general solution in parametric vector form.

#### Solution Options:

1. Option 1:
\[ \begin{bmatrix} 
x_1 \\ 
x_2 \\ 
x_3 
\end{bmatrix} = 
\begin{bmatrix} 
1 \\ 
1 \\ 
0 
\end{bmatrix} 
+ x_3 
\begin{bmatrix} 
7/2 \\ 
2 \\ 
0 
\end{bmatrix} \]

2. Option 2:
\[ \begin{bmatrix} 
x_1 \\ 
x_2 \\ 
x_3 
\end{bmatrix} = 
\begin{bmatrix} 
7/2 \\ 
2 \\ 
1 
\end{bmatrix} 
+ x_3 
\begin{bmatrix} 
1 \\ 
1 \\ 
0 
\end{bmatrix} \]

3. Option 3:
\[ \begin{bmatrix} 
x_1 \\ 
x_2 \\ 
x_3 
\end{bmatrix} = 
\begin{bmatrix} 
1 \\ 
1 \\ 
0 
\end{bmatrix} 
+ x_3 
\begin{bmatrix} 
7/2 \\ 
2 \\ 
1 
\end{bmatrix} \]

4. Option 4:
\[ \begin{bmatrix} 
x_1 \\ 
x_2 \\ 
x_3 
\end{bmatrix} = 
\begin{bmatrix} 
-3 \\ 
1 \\ 
0 
\end{bmatrix} 
+ x_3 
\begin{bmatrix} 
-1/2 \\ 
2 \\ 
1 
\end{bmatrix} \]

Choose the correct option that represents the general solution in parametric vector form.
expand button
Transcribed Image Text:### Solving Systems of Linear Equations – Parametric Vector Form #### Given Problem: Describe all solutions of \( Ax = b \), where \[ A = \begin{bmatrix} 2 & -5 & 3 \\ -2 & 6 & -5 \\ -4 & 7 & 0 \end{bmatrix} \] and \[ b = \begin{bmatrix} -3 \\ 4 \\ 3 \end{bmatrix} \] #### Task: Describe the general solution in parametric vector form. #### Solution Options: 1. Option 1: \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 7/2 \\ 2 \\ 0 \end{bmatrix} \] 2. Option 2: \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7/2 \\ 2 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \] 3. Option 3: \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 7/2 \\ 2 \\ 1 \end{bmatrix} \] 4. Option 4: \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1/2 \\ 2 \\ 1 \end{bmatrix} \] Choose the correct option that represents the general solution in parametric vector form.
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,