Database System Concepts
7th Edition
ISBN: 9780078022159
Author: Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Solve the following LP optimization problem using the simplex method: maximize 40x + 30 subject to x + y <= 12, 2x + y <= 16 x >= 1 , y >= 0
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 11 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- Portfolio manager Max Gaines needs to develop an investment portfolio for his clients who are willing to accept a moderate amount of risk. His task is to determine the proportion of the portfolio to invest in each of the five mutual funds listed below so that the portfolio maximizes the expected return but provides an annual return of no less than 3%. for each of the following scenarios. Annual Returns (Planning Scenarios): mutual fund yr 1 yr 2 yr 3 yr 4 international stock 22.37 26.73 6.46 -3.19 low-cap blend 14.88 18.61 10.52 5.25 mid-cap blend 19.45 18.04 5.91 -1.94 small-cap blend 13.79 11.33 -2.07 6.85 intermediate bond 7.29 8.05 9.18 3.92 Formulate the appropriate linear program for this situation. (state the objective function, the decision variables, and the constraints)arrow_forwardA person is cutting a long board of wood into different length of pieces . Each cutting has fixed width 2 cm lengths. Given that each cutting with different length has a different price, Now, we are required to help this person to find the optimal cuts in order to increase his income. Consider following example showing different cut’s lengths and their equivalent prices. Input: board length = 4 Length [ ] = [1, 2, 3, 4, 5, 6, 7, 8] Price [ ] = [2, 6, 8, 10, 14, 17, 19, 20] Output: Best cut is two pieces of length 2 each to gain revenue of 6 + 6 = 12 [Explanation: the possible cuts and profit of each is as follows: As noted the best cut is two pieces of length 2 each to gain revenue of 6 + 6 = 12arrow_forwardProve that any LP optimization problem can be transformed into the following form: minimize 0 · x subject to Ax = b, x >= 0 If the LP is feasible, then it has an optimum value of 0 If the LP is not feasible, then it has an optimal value of infinity Explain what is the dual of this LP.arrow_forward
- Find an optimal Hoffman code for g:5, o:15, u:28, m:25, b:10, c:17. draw out steps so i can understandarrow_forwardObtain the set of necessary and sufficient conditions for the following NLP Minimize Z = 2x - 24x1x2 + 2x% – 3x3 – 24x1x3 – 8x2x3 + 150arrow_forwardQ5/ by using Graphical Method to determine the optimal value of X1 & X2 that maximize value of Z. Max Z=5X1+ 7X2. Subject to: X1+X2 =0arrow_forward
- Problem: Solve the following equality-constrained optimiza- tion problem using Newton descent algorithm with the initial point (1, 4, 0): min f(x, y, z) = e" + 2y? + 3z2 x,y,z subject to x – 5z = 1 | y + z = 4 Compute the optimal dual variables as well. You have to answered above problem By using Python Programming Language.arrow_forwardK = 0, L = 18 Write and solve the following linear program using lingo, take screen shots of your model as well as the reports and the optimal solution. Clearly show the optimal solution.NB:K=the second digit of your student number;L=sum of the digits of your student number, For example if your student number is 17400159 thenK=7andL=1+7+4+0+0+1+5+9=27!!!! SAVE YOUR FILE BY YOUR STUDENT NUMBER!!!!minz=t∈T∑(AtYt+PtXt)+k∈K∑(HkUk+BkVk)s.t.Uk+Vk=50∀k∈KXt−CtYt<=0∀t∈Tk∈K∑Vk≥80t∈T∑Xt≥t∈T∑DtXt>=0∀t∈TYt∈{0,1}∀t∈TUk>=0∀k∈KVk>=0∀k∈KThe sets parameters and data are as follows: \[ \begin{array}{l} \mathrm{T}=\{1,2,3,4\} \\ \mathrm{K}=\{0,1,2,3,4\} \\ \mathrm{A}=\{5000,7000,8000,4000\} \\ \mathrm{D}=\{250,65,500,400\} \\ \mathrm{C}=\{500,900,700,800\} \\ \mathrm{P}=\{20, \mathrm{~L}, 25,20\} \\ \mathrm{H}=\{5,3,2, \mathrm{~K}, 9\} \\ \mathrm{B}=\{8,5,4,7,6\} \end{array} \]arrow_forwardCsearrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education