College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Size of a Light-Bulb Filament. The operating temperature of a tungsten filament in an incandescent light bulb is 2450 K, and its emissivity is 0.350. Find the surface area of the filament of a 150 W bulb if all the electrical energy consumed by the bulb is
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The Sun has a diameter of approximately 1.4 x 109 m and a surface temperature of about 5650 C. Assuming that the Sun radiates as a blackbody with emissivity of unity, calculate the power radiated by the Sun into the solar system, which you can assume is at the temperature of the microwave background radiation.arrow_forwardA cylindrical surface of radius 57 cm and length 1.2 m maintained at a temperature of 142°C is continuously emitting radiations. If the emissivity of the surface is 0.83. (consider: Stefan's constant σ = 5.67 x 10-8 W/m2T4) Calculate the rate of heat energy radiated in Watts = Answerarrow_forwardThe emissivity of the human skin is 97.0 percent. Use 35.0 °C for the skin temperature and approximate the human body by a rectangular block with a height of 1.61 m, a width of 37.5 cm and a length of 22.0 cm. Calculate the power emitted by the human body. What is the wavelength of the peak in the spectral distribution for this temperature? Fortunately our environment radiates too. The human body absorbs this radiation with an absorptance of 97.0 percent, so we don't lose our internal energy so quickly. How much power do we absorb when we are in a room where the temperature is 23.5 °C? How much energy does our body lose in one second?arrow_forward
- The sun has a temperature of 6000 K and a radius of 6.07 x 10^18 m^2. What is the heat current if it has an emissivity of 1. The Stefan-Boltzmann constant is 5.67 x 10^-8 W/m?K4 8.89 x 10^26 W O 2.76 x 10^25 w O 1.98 x 10^7 W O 4.46 x 10^26 warrow_forwardA 19 century lab technician is testing possible metals for bulb filaments. A tantalum filament with a surface area of 0.370 mm and an emissivity of 0.976 radiates 0.80 W of light. Determine the filament's temperature (in K). The melting point for tantalum is 3269 K.arrow_forwardA radiant heating lamp has a surface temperature of 1000 K with ε = 0.8. How large a surface area is needed to provide 250 W of radiation heat transfer?arrow_forward
- An incandescent light bulb has a tungsten filament that is heated to a temperature of 3.20 × 103 K when an electric current passes through it. If the surface area of the filament is approximately 1.00 × 10−4 m2 and it has an emissivity of 0.360, what is the power radiated by the bulb?The Stefan–Boltzmann constant (σ) is 5.670 × 10−8 W/(m2·K4).arrow_forwardA person is standing outdoors in the shade where the temperature is 33 °C. What is the radiant energy absorbed per second by his head when it is covered with hair? The surface area of the hair (assumed to be flat) is 170 cm2 and its emissivity is 0.85.arrow_forwardPlease help! A student in a lecture hall has 0.310 m^2 of skin (arms, hands, and head) exposed. The skin is at 34.0°C and has an emissivity of 0.970. The temperature of the room is 20.2°C (air, walls, ceiling, and floor all at the same temperature). The Stefan-Boltzmann constant is 5.670 x 10-8 w/ (m2. k4 ). a) at what rate does the skin emit thermal radiation? b) at what rate does the skin absorb thermal radiation? THANK Uarrow_forward
- Sirius B is a white star that has a surface temperature (in kelvins) that is four times that of our sun. Sirius B radiates only 0.040 times the power radiated by the sun. Our sun has a radius of 6.96 × 108 m. Assuming that Sirius B has the same emissivity as the sun, find the radius of Sirius B. RSB= Oarrow_forwardThe next four questions use this description. Our Sun has a peak emission wavelength of about 500 nm and a radius of about 700,000 km. Your dark-adapted eye has a pupil diameter of about 7 mm and can detect light intensity down to about 1.5 x 10-11 W/m2. Assume the emissivity of the Sun is equal to 1. First, given these numbers, what is the surface temperature of the Sun in Kelvin to 3 significant digits? What is the power output of the Sun in moles of watts? (in other words, take the number of watts and divide it by Avogadro's number) Assuming that all of the Sun's power is given off as 500 nm photons*, how many photons are given off by the Sun every second? Report your answer to the nearest power of 10 (e.g. if you got 7 x 1024, give your answer as 25).arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON