situation. Suppose X1,..., Xn d N(μ₁, σ²) and Y₁, . 22d ~ , Xm 2 N(μ2, 02) are all independent, and we'd like to test Ho M1 = μ2. Let A(0; D) denote the likelihood ratio-here, evaluated on the set o D= {X1, Xn, Y₁,..., Ym}. = {(μ1, M2) μ1 = M2} CR2 and for (a) Briefly state the answers to the following questions: (i) What are the MLEs of μ1, μ2, σ² under the current model assumption? (ii) What are the MLEs of μ1, 2, σ² while being restricted to the set no? (b) Show that 2 log A(0; D) = (n+m) log 1+ nm(XY)²] (n+m)S² where X Ŷ = Y₁ + ··· + Ym n m n m and S² = Σ(X; – X)² + Σ(¥¿ − Ÿ)². = [(X;- i=1 j=1 [Hint: You can use the fact that, given a set of numbers {1,..., zn} and their average z = identity ±1(zi — a)² = Σ²²±1(²i − z)² + n(z − a)² holds for any a. - (21++zn)/n, the

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
iid
~
N(μ2,02) are all independent, and we'd like to test
iid
situation. Suppose X1, ..., Xn
~
N(μ1,02) and Y₁,..., Xm
Ho:
M1 =μ2.
Let A(0; D) denote the likelihood ratio-here, evaluated on the set o
D = {X1, … … …, Xn, Y₁, . . ., Ym }.
=
{(M1, M2) μ1
:
=
2} CR2 and for
(a) Briefly state the answers to the following questions: (i) What are the MLEs of μ1, μ2, σ² under the current
model assumption? (ii) What are the MLES of μ1, #2, σ² while being restricted to the set no?
(b) Show that
2 log A(No; D) = (n + m) log |1+
nm(XY)²]
(n+m)S²
where
X1+
+ Xn
Y₁ +
+ Ym
Y
n
M
n
m
and S² = Σ(X; – Ñ)² + Σ(Ÿ¿ − Ÿ)².
= (x −
+
i=1
[Hint: You can use the fact that, given a set of numbers {1,..., Zn} and their average z
(z - a)² = Σ² ²±1 (zi — ž)² + n(ž − a)² holds for any a.
identity
=
(21+
+ Zn)/n, the
Transcribed Image Text:iid ~ N(μ2,02) are all independent, and we'd like to test iid situation. Suppose X1, ..., Xn ~ N(μ1,02) and Y₁,..., Xm Ho: M1 =μ2. Let A(0; D) denote the likelihood ratio-here, evaluated on the set o D = {X1, … … …, Xn, Y₁, . . ., Ym }. = {(M1, M2) μ1 : = 2} CR2 and for (a) Briefly state the answers to the following questions: (i) What are the MLEs of μ1, μ2, σ² under the current model assumption? (ii) What are the MLES of μ1, #2, σ² while being restricted to the set no? (b) Show that 2 log A(No; D) = (n + m) log |1+ nm(XY)²] (n+m)S² where X1+ + Xn Y₁ + + Ym Y n M n m and S² = Σ(X; – Ñ)² + Σ(Ÿ¿ − Ÿ)². = (x − + i=1 [Hint: You can use the fact that, given a set of numbers {1,..., Zn} and their average z (z - a)² = Σ² ²±1 (zi — ž)² + n(ž − a)² holds for any a. identity = (21+ + Zn)/n, the
Expert Solution
steps

Step by step

Solved in 6 steps with 20 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman