College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Singly ionized helium (He+) is a hydrogen - like atom. Determine the energy in eV required to raise a He+ electron from the n = 1 to the n = 2 energy level.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Chapter 39, Problem 044 A hydrogen atom in a state having a binding energy (the energy required to remove an electron) of -1.51 eV makes a transition to a state with an excitation energy (the difference between the energy of the state and that of the ground state) of 10.200 eV. (a) What is the energy of the photon emitted as a result of the transition? What are the (b) higher quantum number and (c) lower quantum number of the transition producing this emission? Use -13.60 eV as the binding energy of an electron in the ground state. (a) Number Units (b) Number Units (c) Number Unitsarrow_forwardWhat frequency of light, in THz (Terahertz, or 10^12 Hz), is needed for an electron in a hydrogen atom to go from the n = 2 state to the n = 3 state?arrow_forwardX-ray is produced by bombarding a tungsten target with high energy electrons accelerated by 8.8 kV of voltage. Use σ = 1 for the electron transition down to K shell (n = 1) and σ = 7.4 for the electron transition down to L shell (n = 2) for characteristic X-ray. What is energy of the characteristic X-ray of the tungsten (Z = 74) target when the electron in n = 4 orbital moves down to n = 1? What is the energy the characteristic X-ray of the tungsten (Z = 74) target when the electron in n = 3 orbital moves down to n = 2?arrow_forward
- An electron in an excited energy state of the Hydrogen atom has an energy En = 0.85 eV which is 12.75 eV above the ground state. What is the radius rn of the electron’s orbit? Select one: a. 4.77 angstroms b. 8.47 angstroms c. 13.23 angstroms d. 2.12 angstromsarrow_forwardThe L series of the characteristic x-ray spectrum of tungsten contains wavelengths of 0.1099 nm and 0.1282 nm. The L-shell ionization energy is 11.544 keV. Which x-ray wavelength corresponds to an N → L transition? Determine the ionization energies of the M and N shells: If the incident electrons were accelerated through a 40.00 keV potential difference before striking the target, find the shortest wavelength of the emitted radiation:arrow_forwardAn electron is in the n = 4 orbit of an hydrogen atom. It returns to the ground state with emission of light. The Rydberg constant is R = 1.097 x 107 m-1. What is the frequency of the light emitted? Select one: a. 2.74 x 1014 Hz b. 8.23 x 106 Hz c. 3.08 x 1015 Hz d. 10.28 x 106 Hzarrow_forward
- In the ground state of the Hydrogen atom the energy of the electron is E0 = -13.61 eV. What is the energy of the electron in the ground state of the He+ ion? Hints:The He+ ion is a Hydrogen-like structure, it has only one electron.How does the energy of the electron depend on the charge of the nucleus? Is this a bound state? Make sure, your answer has the correct sign. Incorrect. Tries 1/20 Previous Tries What is the energy of the electron in the ground state of the Li++ ion? Tries 0/20 The electron in the He+ ion is excited to the n = 2 principal state. What is the energy of the electron now? Tries 0/20 What is the energy of the electron in the Li++ ion in the n = 2 principal state? Tries 0/20 What is the energy of the electron in the Li++ ion in the n = 3 principal state? Tries 0/20 Take element Z = 83 from the periodic table. Ionize it 82 times so that there is only one electron left orbiting around the nucleus. What is the…arrow_forwardA hydrogen atom is in its fourth excited state. The atom emits a 1.28E+3nm wavelength photon. Determine the maximum possible orbital angular momentum of the electron after emission. Express your answer as multiples of hbar.arrow_forward具 Hydrogen has a ground state energy of Eo = -13.6 eV. A helium atom (Z = 2) with only one electron will have a ground state energy of Selected answer will be automatically saved. For keyboard navigation, press up/down arrow keys to select an answer. Question 7 a E0/4. b C e Eo/2. Eo- d 25/3. 4E0/9.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON