Question
Using the average speed of a gas, (8?????)1/2, determine the average de Broglie wavelength for an He atom at 25 °C and at 500 °C.How fast would the He atom need to travel in order to have the same linear momentum as a 500 nm photon?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 5 steps
Knowledge Booster
Similar questions
- Question 2: Deduce the work function for sodium from Fig. Q2. The intersection of the straight line with the horizontal axis is the cutoff frequency, vo=5.8×1014 /sec. For most conducting metals the value of the work function is of the order of a few electron volts. Calculate the photon energy of a typical microwave wavelength of λ = 5 cm. Can this energy sufficient to eject photoelectrons from metal surfaces? Why? Stopping potential (V) 3 2 0 VO 8 12 4 Frequency (1014/sec) Fig. Q2arrow_forward1.3. A photoelectric cell has a cutoff wavelength, λc, of 262.7 nm. ☹ (a) What is the work function of the cell? (b) What current would be produced by the cell if the wavelength was increased to 300 nm? 400 nm? 500 nm? (c) What stopping voltage Vo would be required if the illuminating wavelength were to be reduced to 200 nm? (d) What would be the maximum kinetic energy of the photo-electrons in the case of 200 nm illumination? ¹February 28, 2024 1arrow_forwardAn electron is in a box of width 3.0 * 10-10 m. What are the de Broglie wavelength and the magnitude of the momentum of the electron if it is in the n = 1 level.arrow_forward
- What is the energy in eV and wavelength in µm of a photon that, when absorbed by a hydrogen atom, could cause a transition from the n = 4 to the n = 6 energy level? (a) energy in eV? (b) wavelength in µm?arrow_forwardLight of wavelength 350 nm falls on a potassium surface, and the photoelectrons have amaximum kinetic energy of 1.3 eV.What is the work function of potassium?The speed of light is 3 × 108 m/s and Planck’sconstant is 6.63 × 10−34 J · s.Answer in units of eV. What is the threshold frequency for potassium?Answer in units of Hz.arrow_forwardA) After a 0.790 nm x-ray photon scatters from a free electron, the electron recoils with a speed equal to 1.59E+6 m/s. What was the Compton shift in the photon's wavelength? B) Through what angle was the photon scattered?arrow_forward
- The velocity of an electron is known to be 1.000×105 m/s, with an uncertainty of Av = 1.00×102 m/s. (a) What is the minimum uncertainty in the electron's position, Av, in meters? (b) How does this compare to the de Broglie wavelength of the electron? (c) One of your professors (m = 75.0 kg) is pacing at the front of the classroom, and you measure their velocity to an uncertainty of Av = 0.100 m/s. What is the minimum uncertainty in a measurement of their position? (d) How does this compare to the height of your professor?arrow_forwardLight with wavelength ? = 635 nm is incident on a metallic surface. Electrons are ejected from the surface. The maximum speed of these electrons is v = 4.40 ✕ 105 m/s. a) What is the work function of the metal (in eV)? b) What is the cutoff frequency for this metal (in Hz)?arrow_forwardA photon having a wavelength of 182 nm strikes the surface of a metal sheet having a threshold frequency (νo) of 9.27 x 1014 s-1. Calculate the velocity of the ejected electron in SI units AND in units of miles per hour. Hint: Combine equations 1.3 (pg 16 of textbook) and 3.6 (pg. 94). Report the units of your answer.arrow_forward
arrow_back_ios
arrow_forward_ios