Show the logical equivalence of the following 7. (p v q) V r = p V (q V r) 8. (p A q) ^ r = p ^ (q ^ r) 9. p → q = ¬p V q -p v q 10. p → q = ¬q → ¬p 11. p V q =¬p → q 12. p Aq = ¬(p → ¬q) q) = p ^ ¬q 14. (p → q) ^ (p → r) = p → (q A r) 15. (p → r) ^ (q → r) = (p V q) → r 16. (р — q) v (р → r) = p → (q V r) 17. (p → r) V (q → r) = (p ^ q) → r 18. р+q- (р — q) л (q — р) 19. p → q = ¬p → ¬q

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Discrete Math - Logical Equivalence. Please help me out, Thankyou so much! 19-21.
Show the logical equivalence of the following
7. (p V q) V r = p V (q V r)
8. (рла) лг-рл(q л г)
9. p → q = ¬p V q
10. p → q = ¬q → ¬p
11. p V q = ¬p → q
12. p ^ q = ¬(p
13. -(р
14. (p
15. (p →
16. (р
17. (р
18. p → q
q) = p ^ ¬g
9) л (р
r) A (q → r) = (p V q)
→ r) = p –→ (q A r)
q) v (p
r) V (q
→ r) = p → (q V r)
r) %3D (рлq) —r
(p → q) ^ (q → p)
19. p → q = ¬p → ¬q
20. p + q = (p ^ q) v (¬p ^ ¬g)
21. ¬(p
p + ¬q
22. Show that (p A q)
(p V q) is a tautology
23. Show that ¬(p V (¬p ^ q)) and ¬p ^ ¬q are logically equivalent by developing a series of logical
equivalences.
Transcribed Image Text:Show the logical equivalence of the following 7. (p V q) V r = p V (q V r) 8. (рла) лг-рл(q л г) 9. p → q = ¬p V q 10. p → q = ¬q → ¬p 11. p V q = ¬p → q 12. p ^ q = ¬(p 13. -(р 14. (p 15. (p → 16. (р 17. (р 18. p → q q) = p ^ ¬g 9) л (р r) A (q → r) = (p V q) → r) = p –→ (q A r) q) v (p r) V (q → r) = p → (q V r) r) %3D (рлq) —r (p → q) ^ (q → p) 19. p → q = ¬p → ¬q 20. p + q = (p ^ q) v (¬p ^ ¬g) 21. ¬(p p + ¬q 22. Show that (p A q) (p V q) is a tautology 23. Show that ¬(p V (¬p ^ q)) and ¬p ^ ¬q are logically equivalent by developing a series of logical equivalences.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,