Show that w is in span(B). B= {-}~-B] We want to solve C₁ 18 2 0498 so set up the augmented matrix of the linear system and row-reduce to solve it: 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Linear Algebra - Coordinate Vectors**

### Problem Statement
**Show that** \( \mathbf{w} \) **is in the span of** \( \mathcal{B} \).

Given:

\[ 
\mathcal{B} = \left\{ 
\begin{pmatrix} 
1 \\ 
2 \\ 
0 
\end{pmatrix}, 
\begin{pmatrix} 
1 \\ 
0 \\ 
-1 
\end{pmatrix} 
\right\}, \quad 
\mathbf{w} = 
\begin{pmatrix} 
1 \\ 
8 \\ 
3 
\end{pmatrix} 
\]

### Solution Approach

We want to solve:

\[ 
c_1 
\begin{pmatrix} 
1 \\ 
2 \\ 
0 
\end{pmatrix} +
c_2 
\begin{pmatrix} 
1 \\ 
0 \\ 
-1 
\end{pmatrix} = 
\begin{pmatrix} 
1 \\ 
8 \\ 
3 
\end{pmatrix} 
\]

Set up the augmented matrix of the linear system and perform row reduction:

1. **Initial Matrix:**
   \[
   \begin{bmatrix} 
   1 & 1 & \vline & 1 \\ 
   2 & 0 & \vline & 8 \\ 
   0 & -1 & \vline & 3 
   \end{bmatrix} 
   \]

2. **Perform** \( R_2 - 2R_1 \):
   \[
   \begin{bmatrix} 
   1 & 1 & \vline & 1 \\ 
   0 & -2 & \vline & 6 \\ 
   0 & -1 & \vline & 3 
   \end{bmatrix} 
   \]

3. **Scale** \( -\frac{1}{2} R_2 \):
   \[
   \begin{bmatrix} 
   1 & 1 & \vline & 1 \\ 
   0 & 1 & \vline & -3 \\ 
   0 & -1 & \vline & 3 
   \end{bmatrix} 
   \]

4. **Row Operations** \( R_1 - R_2 \) and
Transcribed Image Text:**Linear Algebra - Coordinate Vectors** ### Problem Statement **Show that** \( \mathbf{w} \) **is in the span of** \( \mathcal{B} \). Given: \[ \mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}, \quad \mathbf{w} = \begin{pmatrix} 1 \\ 8 \\ 3 \end{pmatrix} \] ### Solution Approach We want to solve: \[ c_1 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 8 \\ 3 \end{pmatrix} \] Set up the augmented matrix of the linear system and perform row reduction: 1. **Initial Matrix:** \[ \begin{bmatrix} 1 & 1 & \vline & 1 \\ 2 & 0 & \vline & 8 \\ 0 & -1 & \vline & 3 \end{bmatrix} \] 2. **Perform** \( R_2 - 2R_1 \): \[ \begin{bmatrix} 1 & 1 & \vline & 1 \\ 0 & -2 & \vline & 6 \\ 0 & -1 & \vline & 3 \end{bmatrix} \] 3. **Scale** \( -\frac{1}{2} R_2 \): \[ \begin{bmatrix} 1 & 1 & \vline & 1 \\ 0 & 1 & \vline & -3 \\ 0 & -1 & \vline & 3 \end{bmatrix} \] 4. **Row Operations** \( R_1 - R_2 \) and
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,