Series Tests Geometric Series: Σ ar.-a+ ar + ar' +..tar" + (witha # 0) converges if I < 1 and vrges f 21 Divergence Test: If lima,#0, Σα.dverges. Integral Test: Suppose fis continuous, positive, decreasing function (at least eventually) with 4° f(n). Then, if If(x)ax converges, Σα. converges; if I f(x)ax dverges, Σα. diverges. p-series: Σ +-+-+-+.. converges if p > 1 and diverges if 0 < p 1 The comparison tests must have positive terms (1) Direct Comparison b. and Σ>, converges, then Σ a, converges. If a, If b, s a, and Σ4, diverges, then Σ a, diverges. (2) The Limit Comparison Test: If lim - 1 andan fin, then both Ya and b, behave the same. That is, both series converge or both diverge Alternating Series Test for either form Σ(-1)"'q or Σ(-1)"a, (1) Ignoring the + signs, check that the terms are decreasing. That is, make certain that (2) Check that the terms are heading to zero. That is, make sure that lima-o If both conditions are satisfied, then the alternating series converges. The Ratio Test for Absolute Convergence lflimPatil-L and L < 1 , then the series Σ a, converges absolutely. If L > 1 , then the series diverges. If L = 1 , then the test provides no useful information. The Root Test for Absolute Convergence !flim Vla,-L and L < 1 . then the series Σ a, converges absolutely. If L > 1 , then the series diverges. If L = 1 , then the test provides no useful information.
Series Tests Geometric Series: Σ ar.-a+ ar + ar' +..tar" + (witha # 0) converges if I < 1 and vrges f 21 Divergence Test: If lima,#0, Σα.dverges. Integral Test: Suppose fis continuous, positive, decreasing function (at least eventually) with 4° f(n). Then, if If(x)ax converges, Σα. converges; if I f(x)ax dverges, Σα. diverges. p-series: Σ +-+-+-+.. converges if p > 1 and diverges if 0 < p 1 The comparison tests must have positive terms (1) Direct Comparison b. and Σ>, converges, then Σ a, converges. If a, If b, s a, and Σ4, diverges, then Σ a, diverges. (2) The Limit Comparison Test: If lim - 1 andan fin, then both Ya and b, behave the same. That is, both series converge or both diverge Alternating Series Test for either form Σ(-1)"'q or Σ(-1)"a, (1) Ignoring the + signs, check that the terms are decreasing. That is, make certain that (2) Check that the terms are heading to zero. That is, make sure that lima-o If both conditions are satisfied, then the alternating series converges. The Ratio Test for Absolute Convergence lflimPatil-L and L < 1 , then the series Σ a, converges absolutely. If L > 1 , then the series diverges. If L = 1 , then the test provides no useful information. The Root Test for Absolute Convergence !flim Vla,-L and L < 1 . then the series Σ a, converges absolutely. If L > 1 , then the series diverges. If L = 1 , then the test provides no useful information.
Determine if the series is absolutely convergent, conditionally convergent, or divergent.
(summation of n=1 and n goes to infinity of) sin(pi(n)/6)/(1+n^(3/2))
This series converges by the Direct Comparison Test (see photo of a list of series tests below), but I need to use another test or two to find if the series is conditionally or absolutely convergent. However, I don't know which one in the list to use. All I know is that I can't use the root test, and it doesn't seem like the integral test will work.
Thanks!
With differentiation, one of the major concepts of calculus. Integration involves the calculation of an integral, which is useful to find many quantities such as areas, volumes, and displacement.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.