College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A tuning fork (1024 Hz) is used to find the resonance in a closed air column. The resonant lengths are as follows:
L1 = 8.4 cm (0.084 m)
L2 = 25.2 cm (0.252 m)
Using the equations for the resonant lengths, calculate the wavelength (in metres). Do this for both L1 and L2.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 13 = 342 237. € X Your response differs from the correct answer by more than 10%. Double check your calculations. m (c) Suppose the wire is carbon steel with a density of 7.89 x 10³ kg/m³, a cross-sectional area A = 2.68 x 10-7 m², and an elastic limit of 2.50 x 108 Pa. Find the fundamental frequency if the wire is tightened to the elastic limit. Neglect any stretching of the wire (which would slightly reduce the mass per unit length). Hz EXERCISE HINTS: GETTING STARTED I I'M STUCK! (a) Find the fundamental frequency and second harmonic if the tension in the wire is increased to 118 N. (Assume the wire doesn't stretch or break.) ffundamental = Hz f2nd harmonic= Hz (b) Using a sound speed of 342 m/s, find the wavelengths of the sound waves produced. λ (larger) = 2.00 X Follow the example. Once you have computed the correct fundamental frequency, you should be able to determine the wavelengths of the sound waves. m > (smaller) = 1.00 X Follow the example. Once you have computed the…arrow_forwardA section of drainage culvert 2.25 m in length makes a howling noise when the wind blows across its open ends. Take v=334m/s as the speed of sound in air. Determine the frequencies of the first harmonics of the culvert if it is cylindrical in shape and open at both ends._____Hz Determine the frequencies of the first overtone of the culvert if it is cylindrical in shape and open at both ends._____Hz Determine the frequencies of the secon overtone of the culvert if it is cylindrical in shape and open at both ends._____Hz What are the lowest natural frequencies of the culvert if it is blocked at one end?_____Hz What are the second lowest natural frequencies of the culvert if it is blocked at one end?_____Hz What are the third lowest natural frequencies of the culvert if it is blocked at one end?_____Hz What is the ambient temperature?_____Celsiusarrow_forwardA string experiences several harmonic frequencies. Two successive frequencies are 325Hz and 390Hz. a) What is the fundamental frequency? b) What is the next harmonic higher than 195Hz? c) Which harmonic is this?arrow_forward
- A tuning fork is set into vibration above a vertical open tube filled with water. The water level is allowed to drop slowly. As it does so, the air in the Part A tube above the water level is heard to resonate with the tuning fork when the distance from the tube opening to the water level is 0.125 m and again at 0.395 m. What is the frequency of the tuning fork? (Figure 1) Express your answer with the appropriate units. ? f = Value Units Figure 1 of 1 Submit Request Answer Provide Feedback 0.125 m 0.395 marrow_forwardJust need to be shown parts (a) and (b) Problem 12: A guitar string of length L = 0.99 m is oriented along the x-direction and under a tension of T = 118 N. The string is made of steel which has a density of ρ = 7800 kg / m3. The radius of the string is r = 9.4 x 10-4 m. A transverse wave of amplitude A = 0.0020 m is formed on the string. Part (a) Calculate the mass per unit length μ of the guitar string in kg / m. Part (b) Calculate the velocity (in m/s) of a traveling transverse wave on the guitar string. Part (c) Assume a form y1 = A sin(α) for the transverse displacement of the string. Enter an expression for α of a transverse wave on a string traveling along the positive x-direction in terms of its wavenumber k, the position x, its angular frequency ω, and the time t? α = k x - ω t ✔ Correct! Part (d) Assume a form y2 = A sin(α) for the transverse displacement of the string. Write an expression for α of a transverse wave on a string traveling along the…arrow_forwardPart 1: Tube open at both ends A 2.57 m open ended pipe has two successive harmonics at 495 Hz & 550 Hz. Determine the fundamental frequency, the fundamental wavelength, the wave speed, and the air temperature. f₁ = λη Ξ V = T = Part 2: String fixed at both ends A copper cable of radius 0.6 cm is fixed at both ends and has a tension of 36,910 N. For this cable, the fifteenth harmonic has a frequency of 390 Hz. Determine the fundamental frequency, the fundamental wavelength, the wave speed, and the length of the cable. f₁ = 2₁ = V = L = Part 3: Tube closed at one end A 0.21 m pipe that is closed at one end emits a 2695 Hz wave that has a wavelength of 0.12 m. Determine what harmonic the wave the fundamental frequency, the fundamental wavelength, the wave speed, & the air temperature. n= f₁ = °C 2₁ = V = T = °Carrow_forward
- The C major musical scale has notes C D E F G A B C in order. Select the answers that apply. There are half steps between E and F and between B and C. There are no half steps. The frequencies are uniformly spaced. The scale spans a factor of 2 in frequency. Every note is separated from the one before it by a half step.arrow_forwardA phone cord is 4.89 m long. The cord has a mass of 0.212 kg. A transverse wave pulse is produced by plucking one end of the taut cord. That pulse makes four round trips (down and back) along the cord in 0.666 s. What is the tension in the cord? Hint: Four round trips is a total distance of eight lengths of the cord.arrow_forwardConsider a 1 meter-long string with a mass of 50 g attached to a string vibrator. The tension in the string is 80 N. When the string vibrator is turned on, it oscillates with a frequency of 64 Hz and produces a sinusoidal wave on the string with an amplitude of 4 cm and a constant wave speed. Give your answers to 3 sig fig. A)VWhat is the linear density of the medium?____kg/m B)What is the wave speed?____m/s C)What is the angular frequency?______Hz D) What is the time-averaged power supplied to the wave by the string vibrator?___Warrow_forward
- You are exploring a newly discovered planet. The radius of the planet is 7.20 * 107 m. You suspend a lead weight from the lower end of a light string that is 4.00 m long and has mass 0.0280 kg. You measure that it takes 0.0685 s for a transverse pulse to travel from the lower end to the upper end of the string. On the earth, for the same string and lead weight, it takes 0.0390 s for a transverse pulse to travel the length of the string. The weight of the string is small enough that you ignore its effect on the tension in the string. Assuming that the mass of the planet is distributed with spherical symmetry, what is its mass?arrow_forwardProblem 2: On a violin, the string with the smallest linear density (0.00042 kg/m) is the E5 string. The string produces a fundamental frequency (n = 1) of 659.3 Hz and has a length of 0.32 m between the two fixed ends. What is the tension in the string?arrow_forwardAn organ pipe (L = 3.5 m) is closed at one end. Compute the wavelengths and frequencies of the first three modes of resonance. Assume the speed of sound is v = 343.00 m/s. fi : Hz f3 Hz f5 = Hzarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON