College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
(a) A 33.5-m length of copper wire at 20.0°C has a radius of 0.31 mm. If a potential difference of 7.0 V is applied across the length of the wire, determine the current in the wire. (Use the values in the following table.)
(b) If the wire is heated to 32.0°C while the 7.0-V potential difference is maintained, what is the resulting current in the wire?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) A 35.1-m length of copper wire at 20.0°C has a radius of 0.23 mm. If a potential difference of 7.0 V is applied across the length of the wire, determine the current in the wire. (Use the values in the following table.) Resistivities and Temperature Coefficients of Resistivity for Various Materials (at 20°C) Material Resistivity(Ω · m) Temperature Coefficientof Resistivity [(°C)−1] Silver 1.59 ✕ 10−8 3.8 ✕ 10−3 Copper 1.7 ✕ 10−8 3.9 ✕ 10−3 Gold 2.44 ✕ 10−8 3.4 ✕ 10−3 Aluminum 2.82 ✕ 10−8 3.9 ✕ 10−3 Tungsten 5.6 ✕ 10−8 4.5 ✕ 10−3 Iron 10.0 ✕ 10−8 5.0 ✕ 10−3 Platinum 11 ✕ 10−8 3.92 ✕ 10−3 Lead 22 ✕ 10−8 3.9 ✕ 10−3 Nichromea 150 ✕ 10−8 0.4 ✕ 10−3 Carbon 3.5 ✕ 10−5 −0.5 ✕ 10−3 Germanium 0.46 −48 ✕ 10−3 Silicon 640 −75 ✕ 10−3 Glass 1010–1014 Hard rubber ≈1013 Sulfur 1015 Quartz (fused) 75 ✕ 1016 aA nickel–chromium alloy commonly used in heating elements. Calculate the resistance of the wire and use the value you calculate to find the current…arrow_forwardA rectangular block of copper has sides of length 13 cm, 27 cm, and 35 cm. If the block is connected to a 7.3 V source across two of its opposite faces, find the following. (a) What is the maximum current the block can carry? A (b) What is the minimum current the block can carry? Aarrow_forwardPlease help because I don't know what I did wrong...final units is correct but the my value is wrong.arrow_forward
- When an electric heater is turned on, the Nichrome heating element is at 0° C and draws a current of 14 A, with a potential difference of 120 V between the ends of the element. The element heats up to 744° C, with the potential difference constant. Find the final current. (The temperature coefficient of resistivity of Nichrome is 4.0 10-4 (°C)-1.)arrow_forwardI was working on the equation and I kept getting the answer wrong. n = 2.30/(1.76*10^-25) is the solution i getarrow_forwardA tungsten wire has a radius of 0.068 mm and is heated from 20.0 to 1326 oC. The temperature coefficient of resistivity is α = 4.5 × 10-3 (Co)-1. When 110 V is applied across the ends of the hot wire, a current of 2.1 A is produced. How long is the wire? Neglect any effects due to thermal expansion of the wire.arrow_forward
- In a 100-m-long conductor of cylindrical cross-section (radius ro = 5 mm), the axial current density is J = î2 A/m². The conductivity is o= 5.8-107 S/m. Find a) the current flowing through the conductor, b) the voltage across the entire length of the conductor, c) the overall resistance of the conductor.arrow_forwardA new material is found to be superconducting below 77 K. How much resistance will a 75 mm long sample of this material have if it is at a temperature of 69.3 K while connected to a 6.4 V AC-power supply? R = How much thermal energy will it generate?Thermal energy generated =arrow_forwardAn aluminum wire with a diameter of 0.125 mm has a uniform electric field of 0.195 V/m imposed along its entire length. The temperature of the wire is 35.0°C. Assume one free electron per atom. (a) Use the information in this Table of Resistivities and Temperature Coefficients to determine the resistivity (in Ω · m) of aluminum at this temperature. (b) What is the current density (in MA/m2) in the wire? J =----- MA/m2 (c) What is the total current (in mA) in the wire? I =--------- mA (d) What is the drift speed of the conduction electrons? vd = ------µm/s (e) What potential difference must exist between the ends of a 1.70 m length of the wire to produce the stated electric field? ΔV = --------- Varrow_forward
- A tungsten wire in a vacuum has length 26.0 cm and radius 6.00 mm. A potential difference is applied across it. (a) What is the resistance of the wire at 293 K? Ω (b) Suppose the wire reaches an equilibrium temperature such that it emits 70.0 W in the form of radiation. Neglecting absorption of any radiation from its environment, what is the temperature of the wire? (Note: e = 0.320 for tungsten.) K (c) What is the resistance of the wire at the temperature found in part (b)? Assume the temperature changes linearly over this temperature range. Ω. (d) What voltage drop is required across the wire? (e) Why are tungsten lightbulbs energetically inefficient as light sources?arrow_forwardWhen an electric heater is turned on, the Nichrome heating element is at 0° C and draws a current of 18 A, with a potential difference of 120 V between the ends of the element. The element heats up to 795° C, with the potential difference constant. Find the final current. (The temperature coefficient of resistivity of Nichrome is 4.0 10-4 (°C)-1.)arrow_forwardA copper wire of radius a = 0.172 mm has an aluminum jacket of outer radius b = 0.231 mm. There is a current i = 1.58 A in the composite wire. Take the resistivity for copper and aluminum to be 1.69 × 10*Q-m and 2.75 × 10-°2-m. Calculate the current in (a) the copper and (b) the aluminum. (c) If a potential difference V = 10.4 V between the ends maintains the current, what is the length in meters of the composite wire? (a) Number i Units (b) Number i Units (c) Number i Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON