Refrigerant-134a enters the condenser of a residential heat pump at 1400 kPa and 65°C at a rate of 0.062 kgis and leaves at 1400 kPa as saturated liqud. If the compressor consumes 1.6 kW of power, determine (a) the COP of the heat pump and (b) the rate of heat absorption from outside air COP 3.651V& OL 4465 kW COP 6.356 & QL 8.570 KW COP - 5432 & QL 9.653 KW COP 13468 QL 2.784 KW

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter45: Domestic Refrigerators And Freezers
Section: Chapter Questions
Problem 2RQ: The operating condition for the single compressor in a household refrigerator is the lowest box...
icon
Related questions
Question
Refrigerant-134a enters the condenser of a residential heat pump at 1400 kPa and 65°C at a rate of 0.062 kgis and leaves at 1400 kPa as saturated liquid. If the
compressor consumes 1.6 KW of power, determine (a) the COP of the heat pump and (b) the rate of heat absorption from outside air
COP 3.651V& QL 4 465 kW
COP 6.356 & QL 8.570 kW
COP = 5432 & QL 9.653 kW
COP 1.346& QL= 2.784 kW
Transcribed Image Text:Refrigerant-134a enters the condenser of a residential heat pump at 1400 kPa and 65°C at a rate of 0.062 kgis and leaves at 1400 kPa as saturated liquid. If the compressor consumes 1.6 KW of power, determine (a) the COP of the heat pump and (b) the rate of heat absorption from outside air COP 3.651V& QL 4 465 kW COP 6.356 & QL 8.570 kW COP = 5432 & QL 9.653 kW COP 1.346& QL= 2.784 kW
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning