College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Orange light with a wavelength of 597 nm passes through a single slit and creates a diffraction pattern on a screen 3.10 m away. Suppose the linear distance along the screen between the second dark fringe and the third dark fringe is 13.6 cm. (1) What is the width of the slit? (2) How many dark fringes will be produced on either side of the central maximum? (3) Find the linear distance on the screen from the central bright fringe to the second bright fringe above it.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A laser beam is normally incident on a single slit with width 0.580 mm. A diffraction pattern forms on a screen a distance 1.20 m beyond the slit. The distance between the positions of zero intensity on both sides of the central maximum is 2.12 mm. Calculate the wavelength of the light (in nm). X Find the relationship among y, the distance from the central maximum to the first minimum, L, and 0, and then apply the equation for the Fraunhofer diffraction pattern. Solve for A. Hint: use a small-angle approximation. nmarrow_forwardIn a double slit experiment light of wavelength 650 nm passes through two 3.00 µm wide slits whose centers are 9.00 µm apart and is viewed on a screen 2.50 m away from the slits. (a) What is the distance along the screen between the second order maxima and the central maximum? (b) What is the ratio of the intensity of the second order maxima and the intensity of the central maximum? (c) How many interference maxima are visible in the central maximum of the diffraction envelope? (d) Include a sketch of the situation and a plot of the intensity versus position along the screen.arrow_forwardA slit of width 0.20 mm is illuminated with monochromatic light of wavelength 480 nm, and a diffraction pattern is formed on a screen 1.0 m from the slit. a) What is the width of the central maximum? b) What are the widths of the second- and third-order maxima?arrow_forward
- An instructor directs monochromatic light toward a single slit in an opaque barrier. The light has a wavelength of 550 nm and the slit is 0.230 mm wide. The light that passes through the slit creates a diffraction pattern on a screen, which is 1.65 m from the slit. (a) How wide (in mm) is the central maximum (the central, bright fringe), as measured on the screen? Single-slit diffraction is most readily described with a formula that gives the distance from the center of the pattern to the mth-order dark fringe. Consider the first dark fringe on either side of the central peak (m = ±1). How does its distance relate to the full width of the central maximum? Take care with units. mm (b) How wide (in mm) is either of the two first-order bright fringes, as measured on the screen? Single-slit diffraction is most readily described with a formula that gives the distance from the center of the pattern to the mth-order dark fringe. Consider two adjacent fringes on one side of the…arrow_forwardIn a Young's double-slit experiment the separation distance y between the second-order bright fringe and the central bright fringe on a flat screen is 0.0173 m, when the light has a wavelength of 425 nm. Assume that the angles are small enough so that sin(θ)sin(θ) is approximately equal to tan(θ)tan(θ). Find the separation y when the light has a wavelength of 553 nm.arrow_forwardA diffraction pattern forms when light passes through a single slit. The wavelength of the light is 591 nm. Determine the angle that locates the first dark fringe when the width of the slit is (a)3.3 x 10^-4 m and 3.3 x 10^-6 marrow_forward
- You illuminate a slit with a width of 78.9 μm with a light of wavelength 731 nm and observe the resulting diffraction pattern on a screen that is situated 2.05 m from the slit. What is the width, in centimeters, of the pattern's central maximum?arrow_forwardIn an experiment using Young's slits, the distance between the center of the interference pattern and tenth bright fringe on either side of it is 3.44 cm and the distance between the slits and the screen is 2.0 m. If the wavelength of light used is 5.89x10-7m, determine the slits separation.arrow_forwardUsing a 685 nm wavelength laser, you form the diffraction pattern of a 1.01 mm wide slit on a screen. You measure on the screen that the 15th dark fringe is 9.23 cm away from the center of the central maximum. How far is the screen located from the slit?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON