Question
figure 8 shows a coaxial cable (two nested cylinders of length l, inner radius a and outer radius b. Note that l>>a and l>>b. The inner cylinder is chagred to +Q and the outer cylinder is charged to -Q.
Calculate the electric potential difference between a and b that is ΔVab
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- A solid cylindrical conductor of radius a is surrounded by a concentric cylindrical shell of inner radius b. The solid cylinder and the shell carry charges Qand-Q, respectively. Assuming that the length L of both conductors is much greater than a or b, what is the potential difference between the two conductors? ○a. V = -2k²ln(²/2) ○b. V = -2k²ln() OC. V = -k²ln(4) O d. V = -kln()arrow_forwardA 31 m length of coaxial cable has a solid cylindrical wire inner conductor with a di- ameter of 2.168 mm and carries a charge of 10.02 µC. The surrounding conductor is a cylindrical shell and has an inner diameter of 11.534 mm and a charge of-10.02 C. What is the capacitance of this cable? As- sume the region between the conductors is air. The value of the Coulomb comstant is 8.98755 x 10° N m²/C. Answer in units of nF.arrow_forwardTwo large (treat as infinite) parallel conducting plates are charged to t Q as shown by the battery. A proton is released from rest at point A and is measured to be moving with a speed v, = 2 x 105 m/s when at point B. The right plate is then moved closer to the left as shown in the %3D X X rightmost figure. The experiment is repeated. What will be the speed of the proton at point B? A) Greater B) Smaller C) Equal D) Impossible to determinearrow_forward
- In the image given there are 3 charges along the y axis. it is your job to find an expression for electric potential at point P when : d <arrow_forwardCapacitance Problem 18: A cylindrical capacitor is made of two concentric conducting cylinders. The inner cylinder has radius R1 = 19 cm and carries a uniform charge per unit length of λ = 30 μC/m. The outer cylinder has radius R2 = 45 cm and carries an equal but opposite charge distribution as the inner cylinder. Part (b) Calculate the electric potential difference between the outside and the inside cylinders in V. Part (c) Calculate the capacitance per unit length of these concentric cylinders in F/m.arrow_forwardShow transcribed image text An electric field is given by Ex = 3.5x^3 kN/C. Find the potential difference between the points on the x axis at x = 1 m and x = 4 m. kV Find the maximum surface charge density sigma max that can exist on the surface of any conductor before dielectric breakdown of a gas with a dielectric strength of 3.95 MV/m occurs. C/m^2arrow_forwardA Geiger-Mueller tube is a radiation detector that consists of a closed, hollow, metal cylinder (the cathode) of inner radius ra and a coaxial cylindrical wire (the anode) of radius (see figure below) with a gas filling the space between the electrodes. Assume that the internal diameter of a Geiger-Mueller tube is 1.95 cm and that the wire along the axis has a diameter of 0.190 mm. The dielectric strength of the gas between the central wire and the cylinder is 1.25 x 106 V/m. Use the equation ain 2πrle= to calculate the maximum potential difference that can be applied between the wire and the cylinder before breakdown occurs in the gas. €0 Anode Cathode 148 X Your response differs from the correct answer by more than 10%. Double check your calculations. V Need Help? Read Itarrow_forwardA parallel plate capacitor is charged to a potential of 3000 V and then isolated. Find the magnitude of the charge on the positive plate if the plates area is 0.40 m2 and the distance between the plates is 0.020 m. Group of answer choices 68 µC 54 µC 27 µC 18 µCarrow_forwardarrow_back_iosarrow_forward_ios