Principles of Instrumental Analysis
7th Edition
ISBN: 9781305577213
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
13
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Similar questions
- Calculate the voltages of the following cells at 25°C and under the following conditions: (a) Zn|Zn2+(0.50M)Cd2+(0.020M)|Cd (b) Cu|Cu2+(0.0010M)H+(0.010M)|H2(1.00atm)|Ptarrow_forwardThe measurement of pH using a glass electrode obeys the Nernst equation. The typical response of a pH meter at 25 00C is given by the equation where contains the potential of the reference electrode and all other potentials that arise in the cell that are not related to the hydrogen ion concentration. Assume that = 0.250 V and that a. What is the uncertainty in the values of pH and [H+] if the uncertainty in the measured potential is 1 m V ( 0.001 V)? b. To what precision must the potential be measured for the uncertainty in pH to be 0.02 pH unit?arrow_forwardConsider only the species (at standard conditions) Na+, Cl, Ag+, Ag, Zn2+, Zn, Pb in answering the following questions. Give reasons for your answers. (Use data from Table 17-1.) a. Which is the strongest oxidizing agent? b. Which is the strongest reducing agent? c. Which species can be oxidized by SO42 (aq) in acid? d. Which species can be reduced by Al(s)?arrow_forward
- Consider a voltaic cell in which the following reaction occurs. Zn(s)+Sn2+(aq)Zn2+(aq)+Sn(s) (a) Calculate E° for the cell. (b) When the cell operates, what happens to the concentration of Zn2+? The concentration of Sn2+? (c) When the cell voltage drops to zero, what is the ratio of the concentration of Zn2+ to that of Sn2+? (d) If the concentration of both cations is 1.0 M originally, what are the concentrations when the voltage drops to zero?arrow_forwardCalculate the standard cell potential of the following cell at 25C. Sn(s)Sn2+(aq)I2(aq)I(aq)arrow_forwardCalculate the theoretical potential of each of the following cells.Is the cell reaction spontaneous as written or spontaneous in the opposite direction? (a) Bi|BiO+ (0.0300 M),H+ (0.100 M)||I- (0.100 M), AgI(sat’d)|Ag (b) Zn|Zn2+(5.75 10-4M)||Fe(CN)64-(530 10-2 M),Fe(CN)63-(6.75 10-2M)|Pt (c) Pt,H2O (0.200 atm)|HCI(8.25 10-4M), AgCI(sat’d)| Agarrow_forward
- Galvanic cells harness spontaneous oxidationreduction reactions to produce work by producing a current. They do so by controlling the flow of electrons from the species oxidized to the species reduced. How is a galvanic cell designed? What is in the cathode compartment? The anode compartment? What purpose do electrodes serve? Which way do electrons always flow in the wire connecting the two electrodes in a galvanic cell? Why is it necessary to use a salt bridge or a porous disk in a galvanic cell? Which way do cations flow in the salt bridge? Which way do the anions flow? What is a cell potential and what is a volt?arrow_forwardCalculate the theoretical potential of each of the following cells. Is the cell reaction spontaneous as written or spontaneous in the opposite direction? (a) Pt|Cr3+(2.00 10-4M),Cr2+(1.50 10-3 M)||Pb2+ (5.60 0215 10-2M)|Pb (b) Hg|Hg22+(2.00 10-2 M)||H+(1.50 10-2 M),V3+ (2.00 10-2M),VO2+(3.00 10-3M)|Pt (e) Pt|Fe3+(3.00 10-2 M), Fe2+ (4.00 10-5M)||Sn2+ (3.50 10-2M), Sn4+ (5.50 10-4 M)|Ptarrow_forwardWhat cathode potential (versus SCE) would be required to lower the total Hg(II) concentration of the following solutions to 1.00 10-6 M (assume reaction product in each case is elemental Hg): (a) an aqueous solution of Hg2+? (b) a solution with an equilibrium SCN- concentration of 0.100 M? Hg2+ + 2SCN- Hg(SCN)2(aq) = Kf = 1.8 107 c) a solution with an equilibrium Br- concentration of 0.100 M? HgBr42++ 2e- Hg(l) + 4Br- E0= 0.223 Varrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning