Question 1 a) In J. J. Thomson experiment (1897), an electron moving horizontally with a constant speed vo enters in between the horizontal plates of a capacitor. The electric field strength between the plates of length L and distance d, is E. The vertical deviation of the electron at the moment of exit from the field region is measured to be Y. Derive the expression giving the electron's charge to mass ratio, i.e. e/m to be 2v,Y/CEL). (Recall that Thomson received Nobel Prize for his achievement.) b) Calculate e/m, knowing the following data. E=1.6x10* Newton/Coulomb, L=10 cm, Y=2.9 cm, v=2.19x10* km/s. (Be careful to use coherent units.)

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
100%
Question 1
a) In J. J. Thomson experiment (1897), an electron moving horizontally with a
constant speed vo enters in between the horizontal plates of a capacitor. The
electric field strength between the plates of length L and distance d, is E.
The vertical deviation of the electron at the moment of exit from the field
region is measured to be Y. Derive the expression giving the electron's
charge to mass ratio, i.e. e/m to be 2v,Y/CEL). (Recall that Thomson
received Nobel Prize for his achievement.)
b) Calculate e/m, knowing the following data. E=1.6x10* Newton/Coulomb,
L=10 cm, Y=2.9 cm, v=2.19x10* km/s. (Be careful to use coherent units.)
Transcribed Image Text:Question 1 a) In J. J. Thomson experiment (1897), an electron moving horizontally with a constant speed vo enters in between the horizontal plates of a capacitor. The electric field strength between the plates of length L and distance d, is E. The vertical deviation of the electron at the moment of exit from the field region is measured to be Y. Derive the expression giving the electron's charge to mass ratio, i.e. e/m to be 2v,Y/CEL). (Recall that Thomson received Nobel Prize for his achievement.) b) Calculate e/m, knowing the following data. E=1.6x10* Newton/Coulomb, L=10 cm, Y=2.9 cm, v=2.19x10* km/s. (Be careful to use coherent units.)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Electric field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON