
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:Q6/ The contents of the stirred-tank heating system shown in Fig. E4.10
are heated at a constant rate of Q(Btu/h) using a gas-fired heater. The flow
rate w(lb/h) and volume V(ft³) are constant, but the heat loss to the
surroundings Q(Btu/h) varies with the wind velocity v (ft/s) according to the
expressions: Q. = UA(T – T.) and U(t) = U + bv°(t)
where U, A, b, and Ta are constants. Derive the transfer function between
exit temperature T and wind velocity v. List any additional
assumptions that you make.
%3D
w
V
Ta
T
ellllld
w
Q
Figure E4.10
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The liquid food is flowed through an uninsulated pipe at 90 ° C. The product flow rate is 0.3 kg / s and has a density of 1000 kg / m³, specific heat 4 kJ / (kg K), a viscosity of 8 x 10-6 Pa s, and a thermal conductivity of 0.55 W / (m) K). Assume that the change in viscosity is negligible. The internal diameter of the pipe is 25 mm with a thickness of 3 mm made of stainless steel (k = 15 W / [m ° C]). The outside temperature is 15 ° C. If the outer convective heat transfer coefficient is 18 W / (m² K), calculate the heat loss at steady state per meter pipe length. a. Find the convection coefficient in the pipe = AnswerW / m² ° C. b. Calculate heat loss per meter pipe length = Answerwatt.arrow_forward1. Consider a 1000 MW power plant located in a rural area with 15 ton/day SO2 emissions from a 100 m high stack. The velocity and temperature of the stack gases lead to an effective stack height of 50 m above the physical stack. Estimate the ground level concentration as a function of distance downwind under the following conditions. The emissions are into a clear daytime atmosphere with wind (at 10 m) of 5 m/s. b. The emissions are into a clear nighttime atmosphere with wind (at 10 m) of 2 m/s. The conditions of a. except there is a strong elevated inversion at an altitude of 200 m. a. С.arrow_forwardThe rate of heat transfer from a body to the surroundings is governed by the following equation: D= hA(Tsur - Tbody) Where dis the heat transfer rate (J/s) h is the heat transfer coefficient A is the heat transfer area (m²) Tsur is the temperature of the surroundings (K) Tpody, is the temperature of the body (K) Find the units for the heat transfer coefficient, h.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The

Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY

Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The