Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
A window air conditioner uses R22, the evaporator pressure is 0.5 MPa and the condenser pressure is 2.15 MPa. The cooling capacity is 2 TR. The temperature of the refrigerant exits the compressor is 85C. The refrigerant is saturated vapor at the inlet of the compressor and no subcooling. Determine the mass flowrate of the cycle.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Refrigeration airarrow_forwardThe evaporator and condenser is isobaric with a net heat transfer 250 W in a vapor-compression refrigeration cycle. The cycle operates with R-134a working fluid at a steady state. The compressor's isentropic efficiency is at 60% with a high pressure of 16 bar and low pressure of 1 bar during the cycle. Solve for the mass flow rate, coefficient of performance, and draw the T-s diagram.arrow_forwardplease include Ps and Th diagramarrow_forward
- Show the conversionsarrow_forward13. A plant using R-134a is used to chill water for warship systems. The condenser is also cooled by water. Assume no undercooling in the condenser. The following data is to be used: 50L/s Water flowrate through evaporator Water inlet temperature to evaporator Water outlet temperature from evaporator -10°C 20°C 140L/s 350kPa 1100kPa Water flowrate through condenser Compressor suction pressure Compressor discharge pressure Compressor suction temperature Compressor discharge temperature Specific heat capacity of water Calculate: -10°℃ 60°C 4.2kJ/kgK a. Coefficient of Performance b. refrigerant cooling load c. refrigerant mass flowrate d. compressor power e. heat removed in condenser f. temperature change in condenser cooling waterarrow_forwardThe evaporator (a heat exchanger) in an A/C unit has R-410A entering at -20 °C and a quality of 30% and leaves at the same temperature and a quality of 100%. The COP of the air conditioner is known to be 1.3 and the mass flow rate is given as 0.013 kg/s. Find the power input to the cycle. (Note that, here, the evaporator is the part of the A/C unit that accepts [i.e., withdraws] heat from the room maintained at a cold temperature)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY