
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN: 9780133923605
Author: Robert L. Boylestad
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:Q4) Consider the system shown in Figure Q3. This is a PID control of a second-order
plant G(s). Assume that disturbances d(s) enter the system as shown in the
diagram. It is assumed that the reference input F(s) is normally held constant, and
the response characteristics to disturbances are a very important consideration in
this system.
d(s)
F(s)-
C(s)
G(s)
y(s)
H(s)
Figure Q3
1
K(as + 1)(bs + 1)
G(s)
C(s) =
H(s) = 1
s² + 7s + 10'
In the absence of the reference input i.e. F(s) = 0, derive the closed-loop
transfer function between y(s) and d(s).
a)
b)
The performance specification requires that the unit step disturbance
response be such that the settling time be approximately half a second and the
system has reasonable damping. We may interpret the specification as 3 =
0.8 and wn = 8 for the dominant closed-loop poles. We may choose the third
pole at s = - 10 so that the effect of this real pole on the response is small.
Derive the required characteristic polynomial that satisfies the above
performance specification.
c) Using the result in a) and b), calculate the controller parameters ab, a + b
and K. Hence write down the controller transfer function C(s).
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5. Find the transfer functions of the systems represented by signal flow graphs shown in Figures 3.52 and 3.53. (a) G, Figure 3.52 Signal flow graph. 68 Introduction to Linear and Digital Control Systems (b) G. G2 G, --H, --H, Figure 3.53 Signal flow graph.arrow_forward9. A 6-bit DAC has an input of 1001012 and uses a 10.0 V reference. i. Find the output voltage produced. ii. Specify the conversion resolutionsarrow_forward
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,