Q2/ A 4-m-internal-diameter spherical tank made of 1.75-cm-thick stainless steel (k 15 W/m °C) is used to store iced water at 0°C. The tank is located in a room whose temperature is 35°C. The walls of the room are also at 35°C. The outer surface of the tank is black, and heat transfer between the outer surface of the tank and the surroundings is by natural convection and radiation. The convection heat transfer coefficients at the inner and the outer surfaces of the tank are 80 W/m2· C and 10 W/m2 °C, respectively. Determine (a) the rate of heat transfer to the iced water in the tank and (b) the amount of ice at 0°C that melts during a l-h period. The heat of fusion of water at atmospheric pressure is hif 334 kJ/kg.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
Q2/ A 4-m-internal-diameter spherical tank made of 1.75-em-thick
stainless steel (k 15 W/m °C) is used to store iced water at 0°C. The
tank is located in a room whose temperature is 35°C. The walls of the
room are also at 35°C. The outer surface of the tank is black, and heat
transfer between the outer surface of the tank and the surroundings is by
natural convection and radiation. The convection heat transfer
coefficients at the inner and the outer surfaces of the tank are 80 W/m2
°C and 10 W/m2 °C, respectively. Determine (a) the rate of heat
transfer to the iced water in the tank and (b) the amount of ice at 0°C
that melts during a 1-h period. The heat of fusion of water at
atmospheric pressure is hif 334 kJ/kg.
Transcribed Image Text:Q2/ A 4-m-internal-diameter spherical tank made of 1.75-em-thick stainless steel (k 15 W/m °C) is used to store iced water at 0°C. The tank is located in a room whose temperature is 35°C. The walls of the room are also at 35°C. The outer surface of the tank is black, and heat transfer between the outer surface of the tank and the surroundings is by natural convection and radiation. The convection heat transfer coefficients at the inner and the outer surfaces of the tank are 80 W/m2 °C and 10 W/m2 °C, respectively. Determine (a) the rate of heat transfer to the iced water in the tank and (b) the amount of ice at 0°C that melts during a 1-h period. The heat of fusion of water at atmospheric pressure is hif 334 kJ/kg.
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Energy transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON